/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_KMEANS_INDEX_H_ #define OPENCV_FLANN_KMEANS_INDEX_H_ #include <algorithm> #include <string> #include <map> #include <cassert> #include <limits> #include <cmath> #include "general.h" #include "nn_index.h" #include "dist.h" #include "matrix.h" #include "result_set.h" #include "heap.h" #include "allocator.h" #include "random.h" #include "saving.h" #include "logger.h" namespace cvflann { struct KMeansIndexParams : public IndexParams { KMeansIndexParams(int branching = 32, int iterations = 11, flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) { (*this)["algorithm"] = FLANN_INDEX_KMEANS; // branching factor (*this)["branching"] = branching; // max iterations to perform in one kmeans clustering (kmeans tree) (*this)["iterations"] = iterations; // algorithm used for picking the initial cluster centers for kmeans tree (*this)["centers_init"] = centers_init; // cluster boundary index. Used when searching the kmeans tree (*this)["cb_index"] = cb_index; } }; /** * Hierarchical kmeans index * * Contains a tree constructed through a hierarchical kmeans clustering * and other information for indexing a set of points for nearest-neighbour matching. */ template <typename Distance> class KMeansIndex : public NNIndex<Distance> { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&); /** * The function used for choosing the cluster centers. */ centersAlgFunction chooseCenters; /** * Chooses the initial centers in the k-means clustering in a random manner. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * indices_length = length of indices vector * */ void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length) { UniqueRandom r(indices_length); int index; for (index=0; index<k; ++index) { bool duplicate = true; int rnd; while (duplicate) { duplicate = false; rnd = r.next(); if (rnd<0) { centers_length = index; return; } centers[index] = indices[rnd]; for (int j=0; j<index; ++j) { DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols); if (sq<1e-16) { duplicate = true; } } } } centers_length = index; } /** * Chooses the initial centers in the k-means using Gonzales' algorithm * so that the centers are spaced apart from each other. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * Returns: */ void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length) { int n = indices_length; int rnd = rand_int(n); assert(rnd >=0 && rnd < n); centers[0] = indices[rnd]; int index; for (index=1; index<k; ++index) { int best_index = -1; DistanceType best_val = 0; for (int j=0; j<n; ++j) { DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols); for (int i=1; i<index; ++i) { DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols); if (tmp_dist<dist) { dist = tmp_dist; } } if (dist>best_val) { best_val = dist; best_index = j; } } if (best_index!=-1) { centers[index] = indices[best_index]; } else { break; } } centers_length = index; } /** * Chooses the initial centers in the k-means using the algorithm * proposed in the KMeans++ paper: * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding * * Implementation of this function was converted from the one provided in Arthur's code. * * Params: * k = number of centers * vecs = the dataset of points * indices = indices in the dataset * Returns: */ void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length) { int n = indices_length; double currentPot = 0; DistanceType* closestDistSq = new DistanceType[n]; // Choose one random center and set the closestDistSq values int index = rand_int(n); assert(index >=0 && index < n); centers[0] = indices[index]; for (int i = 0; i < n; i++) { closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); currentPot += closestDistSq[i]; } const int numLocalTries = 1; // Choose each center int centerCount; for (centerCount = 1; centerCount < k; centerCount++) { // Repeat several trials double bestNewPot = -1; int bestNewIndex = -1; for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { // Choose our center - have to be slightly careful to return a valid answer even accounting // for possible rounding errors double randVal = rand_double(currentPot); for (index = 0; index < n-1; index++) { if (randVal <= closestDistSq[index]) break; else randVal -= closestDistSq[index]; } // Compute the new potential double newPot = 0; for (int i = 0; i < n; i++) { DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); } // Store the best result if ((bestNewPot < 0)||(newPot < bestNewPot)) { bestNewPot = newPot; bestNewIndex = index; } } // Add the appropriate center centers[centerCount] = indices[bestNewIndex]; currentPot = bestNewPot; for (int i = 0; i < n; i++) { DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); } } centers_length = centerCount; delete[] closestDistSq; } public: flann_algorithm_t getType() const { return FLANN_INDEX_KMEANS; } /** * Index constructor * * Params: * inputData = dataset with the input features * params = parameters passed to the hierarchical k-means algorithm */ KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), Distance d = Distance()) : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d) { memoryCounter_ = 0; size_ = dataset_.rows; veclen_ = dataset_.cols; branching_ = get_param(params,"branching",32); iterations_ = get_param(params,"iterations",11); if (iterations_<0) { iterations_ = (std::numeric_limits<int>::max)(); } centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM); if (centers_init_==FLANN_CENTERS_RANDOM) { chooseCenters = &KMeansIndex::chooseCentersRandom; } else if (centers_init_==FLANN_CENTERS_GONZALES) { chooseCenters = &KMeansIndex::chooseCentersGonzales; } else if (centers_init_==FLANN_CENTERS_KMEANSPP) { chooseCenters = &KMeansIndex::chooseCentersKMeanspp; } else { throw FLANNException("Unknown algorithm for choosing initial centers."); } cb_index_ = 0.4f; } KMeansIndex(const KMeansIndex&); KMeansIndex& operator=(const KMeansIndex&); /** * Index destructor. * * Release the memory used by the index. */ virtual ~KMeansIndex() { if (root_ != NULL) { free_centers(root_); } if (indices_!=NULL) { delete[] indices_; } } /** * Returns size of index. */ size_t size() const { return size_; } /** * Returns the length of an index feature. */ size_t veclen() const { return veclen_; } void set_cb_index( float index) { cb_index_ = index; } /** * Computes the inde memory usage * Returns: memory used by the index */ int usedMemory() const { return pool_.usedMemory+pool_.wastedMemory+memoryCounter_; } /** * Dummy implementation for other algorithms of addable indexes after that. */ void addIndex(const Matrix<ElementType>& /*wholeData*/, const Matrix<ElementType>& /*additionalData*/) { } /** * Builds the index */ void buildIndex() { if (branching_<2) { throw FLANNException("Branching factor must be at least 2"); } indices_ = new int[size_]; for (size_t i=0; i<size_; ++i) { indices_[i] = int(i); } root_ = pool_.allocate<KMeansNode>(); std::memset(root_, 0, sizeof(KMeansNode)); computeNodeStatistics(root_, indices_, (int)size_); computeClustering(root_, indices_, (int)size_, branching_,0); } void saveIndex(FILE* stream) { save_value(stream, branching_); save_value(stream, iterations_); save_value(stream, memoryCounter_); save_value(stream, cb_index_); save_value(stream, *indices_, (int)size_); save_tree(stream, root_); } void loadIndex(FILE* stream) { load_value(stream, branching_); load_value(stream, iterations_); load_value(stream, memoryCounter_); load_value(stream, cb_index_); if (indices_!=NULL) { delete[] indices_; } indices_ = new int[size_]; load_value(stream, *indices_, size_); if (root_!=NULL) { free_centers(root_); } load_tree(stream, root_); index_params_["algorithm"] = getType(); index_params_["branching"] = branching_; index_params_["iterations"] = iterations_; index_params_["centers_init"] = centers_init_; index_params_["cb_index"] = cb_index_; } /** * Find set of nearest neighbors to vec. Their indices are stored inside * the result object. * * Params: * result = the result object in which the indices of the nearest-neighbors are stored * vec = the vector for which to search the nearest neighbors * searchParams = parameters that influence the search algorithm (checks, cb_index) */ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) { int maxChecks = get_param(searchParams,"checks",32); if (maxChecks==FLANN_CHECKS_UNLIMITED) { findExactNN(root_, result, vec); } else { // Priority queue storing intermediate branches in the best-bin-first search Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); int checks = 0; findNN(root_, result, vec, checks, maxChecks, heap); BranchSt branch; while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { KMeansNodePtr node = branch.node; findNN(node, result, vec, checks, maxChecks, heap); } assert(result.full()); delete heap; } } /** * Clustering function that takes a cut in the hierarchical k-means * tree and return the clusters centers of that clustering. * Params: * numClusters = number of clusters to have in the clustering computed * Returns: number of cluster centers */ int getClusterCenters(Matrix<DistanceType>& centers) { int numClusters = centers.rows; if (numClusters<1) { throw FLANNException("Number of clusters must be at least 1"); } DistanceType variance; KMeansNodePtr* clusters = new KMeansNodePtr[numClusters]; int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance); Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); for (int i=0; i<clusterCount; ++i) { DistanceType* center = clusters[i]->pivot; for (size_t j=0; j<veclen_; ++j) { centers[i][j] = center[j]; } } delete[] clusters; return clusterCount; } IndexParams getParameters() const { return index_params_; } private: /** * Struture representing a node in the hierarchical k-means tree. */ struct KMeansNode { /** * The cluster center. */ DistanceType* pivot; /** * The cluster radius. */ DistanceType radius; /** * The cluster mean radius. */ DistanceType mean_radius; /** * The cluster variance. */ DistanceType variance; /** * The cluster size (number of points in the cluster) */ int size; /** * Child nodes (only for non-terminal nodes) */ KMeansNode** childs; /** * Node points (only for terminal nodes) */ int* indices; /** * Level */ int level; }; typedef KMeansNode* KMeansNodePtr; /** * Alias definition for a nicer syntax. */ typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt; void save_tree(FILE* stream, KMeansNodePtr node) { save_value(stream, *node); save_value(stream, *(node->pivot), (int)veclen_); if (node->childs==NULL) { int indices_offset = (int)(node->indices - indices_); save_value(stream, indices_offset); } else { for(int i=0; i<branching_; ++i) { save_tree(stream, node->childs[i]); } } } void load_tree(FILE* stream, KMeansNodePtr& node) { node = pool_.allocate<KMeansNode>(); load_value(stream, *node); node->pivot = new DistanceType[veclen_]; load_value(stream, *(node->pivot), (int)veclen_); if (node->childs==NULL) { int indices_offset; load_value(stream, indices_offset); node->indices = indices_ + indices_offset; } else { node->childs = pool_.allocate<KMeansNodePtr>(branching_); for(int i=0; i<branching_; ++i) { load_tree(stream, node->childs[i]); } } } /** * Helper function */ void free_centers(KMeansNodePtr node) { delete[] node->pivot; if (node->childs!=NULL) { for (int k=0; k<branching_; ++k) { free_centers(node->childs[k]); } } } /** * Computes the statistics of a node (mean, radius, variance). * * Params: * node = the node to use * indices = the indices of the points belonging to the node */ void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length) { DistanceType radius = 0; DistanceType variance = 0; DistanceType* mean = new DistanceType[veclen_]; memoryCounter_ += int(veclen_*sizeof(DistanceType)); memset(mean,0,veclen_*sizeof(DistanceType)); for (size_t i=0; i<size_; ++i) { ElementType* vec = dataset_[indices[i]]; for (size_t j=0; j<veclen_; ++j) { mean[j] += vec[j]; } variance += distance_(vec, ZeroIterator<ElementType>(), veclen_); } for (size_t j=0; j<veclen_; ++j) { mean[j] /= size_; } variance /= size_; variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_); DistanceType tmp = 0; for (int i=0; i<indices_length; ++i) { tmp = distance_(mean, dataset_[indices[i]], veclen_); if (tmp>radius) { radius = tmp; } } node->variance = variance; node->radius = radius; node->pivot = mean; } /** * The method responsible with actually doing the recursive hierarchical * clustering * * Params: * node = the node to cluster * indices = indices of the points belonging to the current node * branching = the branching factor to use in the clustering * * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) */ void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) { node->size = indices_length; node->level = level; if (indices_length < branching) { node->indices = indices; std::sort(node->indices,node->indices+indices_length); node->childs = NULL; return; } int* centers_idx = new int[branching]; int centers_length; (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); if (centers_length<branching) { node->indices = indices; std::sort(node->indices,node->indices+indices_length); node->childs = NULL; delete [] centers_idx; return; } Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_); for (int i=0; i<centers_length; ++i) { ElementType* vec = dataset_[centers_idx[i]]; for (size_t k=0; k<veclen_; ++k) { dcenters[i][k] = double(vec[k]); } } delete[] centers_idx; std::vector<DistanceType> radiuses(branching); int* count = new int[branching]; for (int i=0; i<branching; ++i) { radiuses[i] = 0; count[i] = 0; } // assign points to clusters int* belongs_to = new int[indices_length]; for (int i=0; i<indices_length; ++i) { DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_); belongs_to[i] = 0; for (int j=1; j<branching; ++j) { DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_); if (sq_dist>new_sq_dist) { belongs_to[i] = j; sq_dist = new_sq_dist; } } if (sq_dist>radiuses[belongs_to[i]]) { radiuses[belongs_to[i]] = sq_dist; } count[belongs_to[i]]++; } bool converged = false; int iteration = 0; while (!converged && iteration<iterations_) { converged = true; iteration++; // compute the new cluster centers for (int i=0; i<branching; ++i) { memset(dcenters[i],0,sizeof(double)*veclen_); radiuses[i] = 0; } for (int i=0; i<indices_length; ++i) { ElementType* vec = dataset_[indices[i]]; double* center = dcenters[belongs_to[i]]; for (size_t k=0; k<veclen_; ++k) { center[k] += vec[k]; } } for (int i=0; i<branching; ++i) { int cnt = count[i]; for (size_t k=0; k<veclen_; ++k) { dcenters[i][k] /= cnt; } } // reassign points to clusters for (int i=0; i<indices_length; ++i) { DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_); int new_centroid = 0; for (int j=1; j<branching; ++j) { DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_); if (sq_dist>new_sq_dist) { new_centroid = j; sq_dist = new_sq_dist; } } if (sq_dist>radiuses[new_centroid]) { radiuses[new_centroid] = sq_dist; } if (new_centroid != belongs_to[i]) { count[belongs_to[i]]--; count[new_centroid]++; belongs_to[i] = new_centroid; converged = false; } } for (int i=0; i<branching; ++i) { // if one cluster converges to an empty cluster, // move an element into that cluster if (count[i]==0) { int j = (i+1)%branching; while (count[j]<=1) { j = (j+1)%branching; } for (int k=0; k<indices_length; ++k) { if (belongs_to[k]==j) { // for cluster j, we move the furthest element from the center to the empty cluster i if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) { belongs_to[k] = i; count[j]--; count[i]++; break; } } } converged = false; } } } DistanceType** centers = new DistanceType*[branching]; for (int i=0; i<branching; ++i) { centers[i] = new DistanceType[veclen_]; memoryCounter_ += (int)(veclen_*sizeof(DistanceType)); for (size_t k=0; k<veclen_; ++k) { centers[i][k] = (DistanceType)dcenters[i][k]; } } // compute kmeans clustering for each of the resulting clusters node->childs = pool_.allocate<KMeansNodePtr>(branching); int start = 0; int end = start; for (int c=0; c<branching; ++c) { int s = count[c]; DistanceType variance = 0; DistanceType mean_radius =0; for (int i=0; i<indices_length; ++i) { if (belongs_to[i]==c) { DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); variance += d; mean_radius += sqrt(d); std::swap(indices[i],indices[end]); std::swap(belongs_to[i],belongs_to[end]); end++; } } variance /= s; mean_radius /= s; variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); node->childs[c] = pool_.allocate<KMeansNode>(); std::memset(node->childs[c], 0, sizeof(KMeansNode)); node->childs[c]->radius = radiuses[c]; node->childs[c]->pivot = centers[c]; node->childs[c]->variance = variance; node->childs[c]->mean_radius = mean_radius; computeClustering(node->childs[c],indices+start, end-start, branching, level+1); start=end; } delete[] dcenters.data; delete[] centers; delete[] count; delete[] belongs_to; } /** * Performs one descent in the hierarchical k-means tree. The branches not * visited are stored in a priority queue. * * Params: * node = node to explore * result = container for the k-nearest neighbors found * vec = query points * checks = how many points in the dataset have been checked so far * maxChecks = maximum dataset points to checks */ void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, Heap<BranchSt>* heap) { // Ignore those clusters that are too far away { DistanceType bsq = distance_(vec, node->pivot, veclen_); DistanceType rsq = node->radius; DistanceType wsq = result.worstDist(); DistanceType val = bsq-rsq-wsq; DistanceType val2 = val*val-4*rsq*wsq; //if (val>0) { if ((val>0)&&(val2>0)) { return; } } if (node->childs==NULL) { if (checks>=maxChecks) { if (result.full()) return; } checks += node->size; for (int i=0; i<node->size; ++i) { int index = node->indices[i]; DistanceType dist = distance_(dataset_[index], vec, veclen_); result.addPoint(dist, index); } } else { DistanceType* domain_distances = new DistanceType[branching_]; int closest_center = exploreNodeBranches(node, vec, domain_distances, heap); delete[] domain_distances; findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap); } } /** * Helper function that computes the nearest childs of a node to a given query point. * Params: * node = the node * q = the query point * distances = array with the distances to each child node. * Returns: */ int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap) { int best_index = 0; domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_); for (int i=1; i<branching_; ++i) { domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_); if (domain_distances[i]<domain_distances[best_index]) { best_index = i; } } // float* best_center = node->childs[best_index]->pivot; for (int i=0; i<branching_; ++i) { if (i != best_index) { domain_distances[i] -= cb_index_*node->childs[i]->variance; // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); // if (domain_distances[i]<dist_to_border) { // domain_distances[i] = dist_to_border; // } heap->insert(BranchSt(node->childs[i],domain_distances[i])); } } return best_index; } /** * Function the performs exact nearest neighbor search by traversing the entire tree. */ void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec) { // Ignore those clusters that are too far away { DistanceType bsq = distance_(vec, node->pivot, veclen_); DistanceType rsq = node->radius; DistanceType wsq = result.worstDist(); DistanceType val = bsq-rsq-wsq; DistanceType val2 = val*val-4*rsq*wsq; // if (val>0) { if ((val>0)&&(val2>0)) { return; } } if (node->childs==NULL) { for (int i=0; i<node->size; ++i) { int index = node->indices[i]; DistanceType dist = distance_(dataset_[index], vec, veclen_); result.addPoint(dist, index); } } else { int* sort_indices = new int[branching_]; getCenterOrdering(node, vec, sort_indices); for (int i=0; i<branching_; ++i) { findExactNN(node->childs[sort_indices[i]],result,vec); } delete[] sort_indices; } } /** * Helper function. * * I computes the order in which to traverse the child nodes of a particular node. */ void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices) { DistanceType* domain_distances = new DistanceType[branching_]; for (int i=0; i<branching_; ++i) { DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_); int j=0; while (domain_distances[j]<dist && j<i) j++; for (int k=i; k>j; --k) { domain_distances[k] = domain_distances[k-1]; sort_indices[k] = sort_indices[k-1]; } domain_distances[j] = dist; sort_indices[j] = i; } delete[] domain_distances; } /** * Method that computes the squared distance from the query point q * from inside region with center c to the border between this * region and the region with center p */ DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) { DistanceType sum = 0; DistanceType sum2 = 0; for (int i=0; i<veclen_; ++i) { DistanceType t = c[i]-p[i]; sum += t*(q[i]-(c[i]+p[i])/2); sum2 += t*t; } return sum*sum/sum2; } /** * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize * the overall variance of the clustering. * Params: * root = root node * clusters = array with clusters centers (return value) * varianceValue = variance of the clustering (return value) * Returns: */ int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue) { int clusterCount = 1; clusters[0] = root; DistanceType meanVariance = root->variance*root->size; while (clusterCount<clusters_length) { DistanceType minVariance = (std::numeric_limits<DistanceType>::max)(); int splitIndex = -1; for (int i=0; i<clusterCount; ++i) { if (clusters[i]->childs != NULL) { DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; for (int j=0; j<branching_; ++j) { variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size; } if (variance<minVariance) { minVariance = variance; splitIndex = i; } } } if (splitIndex==-1) break; if ( (branching_+clusterCount-1) > clusters_length) break; meanVariance = minVariance; // split node KMeansNodePtr toSplit = clusters[splitIndex]; clusters[splitIndex] = toSplit->childs[0]; for (int i=1; i<branching_; ++i) { clusters[clusterCount++] = toSplit->childs[i]; } } varianceValue = meanVariance/root->size; return clusterCount; } private: /** The branching factor used in the hierarchical k-means clustering */ int branching_; /** Maximum number of iterations to use when performing k-means clustering */ int iterations_; /** Algorithm for choosing the cluster centers */ flann_centers_init_t centers_init_; /** * Cluster border index. This is used in the tree search phase when determining * the closest cluster to explore next. A zero value takes into account only * the cluster centres, a value greater then zero also take into account the size * of the cluster. */ float cb_index_; /** * The dataset used by this index */ const Matrix<ElementType> dataset_; /** Index parameters */ IndexParams index_params_; /** * Number of features in the dataset. */ size_t size_; /** * Length of each feature. */ size_t veclen_; /** * The root node in the tree. */ KMeansNodePtr root_; /** * Array of indices to vectors in the dataset. */ int* indices_; /** * The distance */ Distance distance_; /** * Pooled memory allocator. */ PooledAllocator pool_; /** * Memory occupied by the index. */ int memoryCounter_; }; } #endif //OPENCV_FLANN_KMEANS_INDEX_H_