/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #if !defined HAVE_CUDA || defined(CUDA_DISABLER) cv::gpu::GMG_GPU::GMG_GPU() { throw_nogpu(); } void cv::gpu::GMG_GPU::initialize(cv::Size, float, float) { throw_nogpu(); } void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, cv::gpu::Stream&) { throw_nogpu(); } void cv::gpu::GMG_GPU::release() {} #else namespace cv { namespace gpu { namespace device { namespace bgfg_gmg { void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior, float decisionThreshold, int maxFeatures, int numInitializationFrames); template <typename SrcT> void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); } }}} cv::gpu::GMG_GPU::GMG_GPU() { maxFeatures = 64; learningRate = 0.025f; numInitializationFrames = 120; quantizationLevels = 16; backgroundPrior = 0.8f; decisionThreshold = 0.8f; smoothingRadius = 7; updateBackgroundModel = true; } void cv::gpu::GMG_GPU::initialize(cv::Size frameSize, float min, float max) { using namespace cv::gpu::device::bgfg_gmg; CV_Assert(min < max); CV_Assert(maxFeatures > 0); CV_Assert(learningRate >= 0.0f && learningRate <= 1.0f); CV_Assert(numInitializationFrames >= 1); CV_Assert(quantizationLevels >= 1 && quantizationLevels <= 255); CV_Assert(backgroundPrior >= 0.0f && backgroundPrior <= 1.0f); minVal_ = min; maxVal_ = max; frameSize_ = frameSize; frameNum_ = 0; nfeatures_.create(frameSize_, CV_32SC1); colors_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32SC1); weights_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32FC1); nfeatures_.setTo(cv::Scalar::all(0)); if (smoothingRadius > 0) boxFilter_ = cv::gpu::createBoxFilter_GPU(CV_8UC1, CV_8UC1, cv::Size(smoothingRadius, smoothingRadius)); loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, quantizationLevels, backgroundPrior, decisionThreshold, maxFeatures, numInitializationFrames); } void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float newLearningRate, cv::gpu::Stream& stream) { using namespace cv::gpu::device::bgfg_gmg; typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); static const func_t funcs[6][4] = { {update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>}, {0,0,0,0}, {update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>}, {0,0,0,0}, {0,0,0,0}, {update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>} }; CV_Assert(frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F); CV_Assert(frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4); if (newLearningRate != -1.0f) { CV_Assert(newLearningRate >= 0.0f && newLearningRate <= 1.0f); learningRate = newLearningRate; } if (frame.size() != frameSize_) initialize(frame.size(), 0.0f, frame.depth() == CV_8U ? 255.0f : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0f); fgmask.create(frameSize_, CV_8UC1); if (stream) stream.enqueueMemSet(fgmask, cv::Scalar::all(0)); else fgmask.setTo(cv::Scalar::all(0)); funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, learningRate, updateBackgroundModel, cv::gpu::StreamAccessor::getStream(stream)); // medianBlur if (smoothingRadius > 0) { boxFilter_->apply(fgmask, buf_, cv::Rect(0,0,-1,-1), stream); int minCount = (smoothingRadius * smoothingRadius + 1) / 2; double thresh = 255.0 * minCount / (smoothingRadius * smoothingRadius); cv::gpu::threshold(buf_, fgmask, thresh, 255.0, cv::THRESH_BINARY, stream); } // keep track of how many frames we have processed ++frameNum_; } void cv::gpu::GMG_GPU::release() { frameSize_ = Size(); nfeatures_.release(); colors_.release(); weights_.release(); boxFilter_.release(); buf_.release(); } #endif