/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__ #define __OPENCV_STITCHING_WARPERS_INL_HPP__ #include "opencv2/core/core.hpp" #include "warpers.hpp" // Make your IDE see declarations namespace cv { namespace detail { template <class P> Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, const Mat &K, const Mat &R) { projector_.setCameraParams(K, R); Point2f uv; projector_.mapForward(pt.x, pt.y, uv.x, uv.y); return uv; } template <class P> Rect RotationWarperBase<P>::buildMaps(Size src_size, const Mat &K, const Mat &R, Mat &xmap, Mat &ymap) { projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); float x, y; for (int v = dst_tl.y; v <= dst_br.y; ++v) { for (int u = dst_tl.x; u <= dst_br.x; ++u) { projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; } } return Rect(dst_tl, dst_br); } template <class P> Point RotationWarperBase<P>::warp(const Mat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode, Mat &dst) { Mat xmap, ymap; Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap); dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); remap(src, dst, xmap, ymap, interp_mode, border_mode); return dst_roi.tl(); } template <class P> void RotationWarperBase<P>::warpBackward(const Mat &src, const Mat &K, const Mat &R, int interp_mode, int border_mode, Size dst_size, Mat &dst) { projector_.setCameraParams(K, R); Point src_tl, src_br; detectResultRoi(dst_size, src_tl, src_br); CV_Assert(src_br.x - src_tl.x + 1 == src.cols && src_br.y - src_tl.y + 1 == src.rows); Mat xmap(dst_size, CV_32F); Mat ymap(dst_size, CV_32F); float u, v; for (int y = 0; y < dst_size.height; ++y) { for (int x = 0; x < dst_size.width; ++x) { projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); xmap.at<float>(y, x) = u - src_tl.x; ymap.at<float>(y, x) = v - src_tl.y; } } dst.create(dst_size, src.type()); remap(src, dst, xmap, ymap, interp_mode, border_mode); } template <class P> Rect RotationWarperBase<P>::warpRoi(Size src_size, const Mat &K, const Mat &R) { projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); } template <class P> void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) { float tl_uf = std::numeric_limits<float>::max(); float tl_vf = std::numeric_limits<float>::max(); float br_uf = -std::numeric_limits<float>::max(); float br_vf = -std::numeric_limits<float>::max(); float u, v; for (int y = 0; y < src_size.height; ++y) { for (int x = 0; x < src_size.width; ++x) { projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); } } dst_tl.x = static_cast<int>(tl_uf); dst_tl.y = static_cast<int>(tl_vf); dst_br.x = static_cast<int>(br_uf); dst_br.y = static_cast<int>(br_vf); } template <class P> void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br) { float tl_uf = std::numeric_limits<float>::max(); float tl_vf = std::numeric_limits<float>::max(); float br_uf = -std::numeric_limits<float>::max(); float br_vf = -std::numeric_limits<float>::max(); float u, v; for (float x = 0; x < src_size.width; ++x) { projector_.mapForward(static_cast<float>(x), 0, u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); } for (int y = 0; y < src_size.height; ++y) { projector_.mapForward(0, static_cast<float>(y), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); } dst_tl.x = static_cast<int>(tl_uf); dst_tl.y = static_cast<int>(tl_vf); dst_br.x = static_cast<int>(br_uf); dst_br.y = static_cast<int>(br_vf); } inline void PlaneProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; x_ = t[0] + x_ / z_ * (1 - t[2]); y_ = t[1] + y_ / z_ * (1 - t[2]); u = scale * x_; v = scale * y_; } inline void PlaneProjector::mapBackward(float u, float v, float &x, float &y) { u = u / scale - t[0]; v = v / scale - t[1]; float z; x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]); y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]); z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]); x /= z; y /= z; } inline void SphericalProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; u = scale * atan2f(x_, z_); float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_); v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0)); } inline void SphericalProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float sinv = sinf(static_cast<float>(CV_PI) - v); float x_ = sinv * sinf(u); float y_ = cosf(static_cast<float>(CV_PI) - v); float z_ = sinv * cosf(u); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void CylindricalProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; u = scale * atan2f(x_, z_); v = scale * y_ / sqrtf(x_ * x_ + z_ * z_); } inline void CylindricalProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float x_ = sinf(u); float y_ = v; float z_ = cosf(u); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void FisheyeProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); u = scale * v_ * cosf(u_); v = scale * v_ * sinf(u_); } inline void FisheyeProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float u_ = atan2f(v, u); float v_ = sqrtf(u*u + v*v); float sinv = sinf((float)CV_PI - v_); float x_ = sinv * sinf(u_); float y_ = cosf((float)CV_PI - v_); float z_ = sinv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void StereographicProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); float r = sinf(v_) / (1 - cosf(v_)); u = scale * r * cos(u_); v = scale * r * sin(u_); } inline void StereographicProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float u_ = atan2f(v, u); float r = sqrtf(u*u + v*v); float v_ = 2 * atanf(1.f / r); float sinv = sinf((float)CV_PI - v_); float x_ = sinv * sinf(u_); float y_ = cosf((float)CV_PI - v_); float z_ = sinv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); u = scale * a * tanf(u_ / a); v = scale * b * tanf(v_) / cosf(u_); } inline void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float aatg = a * atanf(u / a); float u_ = aatg; float v_ = atanf(v * cosf(aatg) / b); float cosv = cosf(v_); float x_ = cosv * sinf(u_); float y_ = sinf(v_); float z_ = cosv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v) { float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); u = - scale * a * tanf(u_ / a); v = scale * b * tanf(v_) / cosf(u_); } inline void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y) { u /= - scale; v /= scale; float aatg = a * atanf(u / a); float u_ = aatg; float v_ = atanf(v * cosf( aatg ) / b); float cosv = cosf(v_); float y_ = cosv * sinf(u_); float x_ = sinf(v_); float z_ = cosv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void PaniniProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); float tg = a * tanf(u_ / a); u = scale * tg; float sinu = sinf(u_); if ( fabs(sinu) < 1E-7 ) v = scale * b * tanf(v_); else v = scale * b * tg * tanf(v_) / sinu; } inline void PaniniProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float lamda = a * atanf(u / a); float u_ = lamda; float v_; if ( fabs(lamda) > 1E-7) v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a))); else v_ = atanf(v / b); float cosv = cosf(v_); float x_ = cosv * sinf(u_); float y_ = sinf(v_); float z_ = cosv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v) { float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); float tg = a * tanf(u_ / a); u = - scale * tg; float sinu = sinf( u_ ); if ( fabs(sinu) < 1E-7 ) v = scale * b * tanf(v_); else v = scale * b * tg * tanf(v_) / sinu; } inline void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y) { u /= - scale; v /= scale; float lamda = a * atanf(u / a); float u_ = lamda; float v_; if ( fabs(lamda) > 1E-7) v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a))); else v_ = atanf(v / b); float cosv = cosf(v_); float y_ = cosv * sinf(u_); float x_ = sinf(v_); float z_ = cosv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void MercatorProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); u = scale * u_; v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) ); } inline void MercatorProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float v_ = atanf( sinhf(v) ); float u_ = u; float cosv = cosf(v_); float x_ = cosv * sinf(u_); float y_ = sinf(v_); float z_ = cosv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v) { float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float u_ = atan2f(x_, z_); float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); float B = cosf(v_) * sinf(u_); u = scale / 2 * logf( (1+B) / (1-B) ); v = scale * atan2f(tanf(v_), cosf(u_)); } inline void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y) { u /= scale; v /= scale; float v_ = asinf( sinf(v) / coshf(u) ); float u_ = atan2f( sinhf(u), cos(v) ); float cosv = cosf(v_); float x_ = cosv * sinf(u_); float y_ = sinf(v_); float z_ = cosv * cosf(u_); float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0) { float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float x_ = y0_; float y_ = x0_; float u, v; u = scale * atan2f(x_, z_); v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_))); u0 = -u;//v; v0 = v;//u; } inline void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y) { float u, v; u = -u0;//v0; v = v0;//u0; u /= scale; v /= scale; float sinv = sinf(static_cast<float>(CV_PI) - v); float x0_ = sinv * sinf(u); float y0_ = cosf(static_cast<float>(CV_PI) - v); float z_ = sinv * cosf(u); float x_ = y0_; float y_ = x0_; float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0) { float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float x_ = y0_; float y_ = x0_; float u, v; u = scale * atan2f(x_, z_); v = scale * y_ / sqrtf(x_ * x_ + z_ * z_); u0 = -u;//v; v0 = v;//u; } inline void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y) { float u, v; u = -u0;//v0; v = v0;//u0; u /= scale; v /= scale; float x0_ = sinf(u); float y0_ = v; float z_ = cosf(u); float x_ = y0_; float y_ = x0_; float z; x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; if (z > 0) { x /= z; y /= z; } else x = y = -1; } inline void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0) { float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; float x_ = y0_; float y_ = x0_; x_ = t[0] + x_ / z_ * (1 - t[2]); y_ = t[1] + y_ / z_ * (1 - t[2]); float u,v; u = scale * x_; v = scale * y_; u0 = -u; v0 = v; } inline void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y) { float u, v; u = -u0; v = v0; u = u / scale - t[0]; v = v / scale - t[1]; float z; x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]); y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]); z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]); x /= z; y /= z; } } // namespace detail } // namespace cv #endif // __OPENCV_STITCHING_WARPERS_INL_HPP__