/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" CvNormalBayesClassifier::CvNormalBayesClassifier() { var_count = var_all = 0; var_idx = 0; cls_labels = 0; count = 0; sum = 0; productsum = 0; avg = 0; inv_eigen_values = 0; cov_rotate_mats = 0; c = 0; default_model_name = "my_nb"; } void CvNormalBayesClassifier::clear() { if( cls_labels ) { for( int cls = 0; cls < cls_labels->cols; cls++ ) { cvReleaseMat( &count[cls] ); cvReleaseMat( &sum[cls] ); cvReleaseMat( &productsum[cls] ); cvReleaseMat( &avg[cls] ); cvReleaseMat( &inv_eigen_values[cls] ); cvReleaseMat( &cov_rotate_mats[cls] ); } } cvReleaseMat( &cls_labels ); cvReleaseMat( &var_idx ); cvReleaseMat( &c ); cvFree( &count ); } CvNormalBayesClassifier::~CvNormalBayesClassifier() { clear(); } CvNormalBayesClassifier::CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx ) { var_count = var_all = 0; var_idx = 0; cls_labels = 0; count = 0; sum = 0; productsum = 0; avg = 0; inv_eigen_values = 0; cov_rotate_mats = 0; c = 0; default_model_name = "my_nb"; train( _train_data, _responses, _var_idx, _sample_idx ); } bool CvNormalBayesClassifier::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, bool update ) { const float min_variation = FLT_EPSILON; bool result = false; CvMat* responses = 0; const float** train_data = 0; CvMat* __cls_labels = 0; CvMat* __var_idx = 0; CvMat* cov = 0; CV_FUNCNAME( "CvNormalBayesClassifier::train" ); __BEGIN__; int cls, nsamples = 0, _var_count = 0, _var_all = 0, nclasses = 0; int s, c1, c2; const int* responses_data; CV_CALL( cvPrepareTrainData( 0, _train_data, CV_ROW_SAMPLE, _responses, CV_VAR_CATEGORICAL, _var_idx, _sample_idx, false, &train_data, &nsamples, &_var_count, &_var_all, &responses, &__cls_labels, &__var_idx )); if( !update ) { const size_t mat_size = sizeof(CvMat*); size_t data_size; clear(); var_idx = __var_idx; cls_labels = __cls_labels; __var_idx = __cls_labels = 0; var_count = _var_count; var_all = _var_all; nclasses = cls_labels->cols; data_size = nclasses*6*mat_size; CV_CALL( count = (CvMat**)cvAlloc( data_size )); memset( count, 0, data_size ); sum = count + nclasses; productsum = sum + nclasses; avg = productsum + nclasses; inv_eigen_values= avg + nclasses; cov_rotate_mats = inv_eigen_values + nclasses; CV_CALL( c = cvCreateMat( 1, nclasses, CV_64FC1 )); for( cls = 0; cls < nclasses; cls++ ) { CV_CALL(count[cls] = cvCreateMat( 1, var_count, CV_32SC1 )); CV_CALL(sum[cls] = cvCreateMat( 1, var_count, CV_64FC1 )); CV_CALL(productsum[cls] = cvCreateMat( var_count, var_count, CV_64FC1 )); CV_CALL(avg[cls] = cvCreateMat( 1, var_count, CV_64FC1 )); CV_CALL(inv_eigen_values[cls] = cvCreateMat( 1, var_count, CV_64FC1 )); CV_CALL(cov_rotate_mats[cls] = cvCreateMat( var_count, var_count, CV_64FC1 )); CV_CALL(cvZero( count[cls] )); CV_CALL(cvZero( sum[cls] )); CV_CALL(cvZero( productsum[cls] )); CV_CALL(cvZero( avg[cls] )); CV_CALL(cvZero( inv_eigen_values[cls] )); CV_CALL(cvZero( cov_rotate_mats[cls] )); } } else { // check that the new training data has the same dimensionality etc. if( _var_count != var_count || _var_all != var_all || !((!_var_idx && !var_idx) || (_var_idx && var_idx && cvNorm(_var_idx,var_idx,CV_C) < DBL_EPSILON)) ) CV_ERROR( CV_StsBadArg, "The new training data is inconsistent with the original training data" ); if( cls_labels->cols != __cls_labels->cols || cvNorm(cls_labels, __cls_labels, CV_C) > DBL_EPSILON ) CV_ERROR( CV_StsNotImplemented, "In the current implementation the new training data must have absolutely " "the same set of class labels as used in the original training data" ); nclasses = cls_labels->cols; } responses_data = responses->data.i; CV_CALL( cov = cvCreateMat( _var_count, _var_count, CV_64FC1 )); /* process train data (count, sum , productsum) */ for( s = 0; s < nsamples; s++ ) { cls = responses_data[s]; int* count_data = count[cls]->data.i; double* sum_data = sum[cls]->data.db; double* prod_data = productsum[cls]->data.db; const float* train_vec = train_data[s]; for( c1 = 0; c1 < _var_count; c1++, prod_data += _var_count ) { double val1 = train_vec[c1]; sum_data[c1] += val1; count_data[c1]++; for( c2 = c1; c2 < _var_count; c2++ ) prod_data[c2] += train_vec[c2]*val1; } } cvReleaseMat( &responses ); responses = 0; /* calculate avg, covariance matrix, c */ for( cls = 0; cls < nclasses; cls++ ) { double det = 1; int i, j; CvMat* w = inv_eigen_values[cls]; int* count_data = count[cls]->data.i; double* avg_data = avg[cls]->data.db; double* sum1 = sum[cls]->data.db; cvCompleteSymm( productsum[cls], 0 ); for( j = 0; j < _var_count; j++ ) { int n = count_data[j]; avg_data[j] = n ? sum1[j] / n : 0.; } count_data = count[cls]->data.i; avg_data = avg[cls]->data.db; sum1 = sum[cls]->data.db; for( i = 0; i < _var_count; i++ ) { double* avg2_data = avg[cls]->data.db; double* sum2 = sum[cls]->data.db; double* prod_data = productsum[cls]->data.db + i*_var_count; double* cov_data = cov->data.db + i*_var_count; double s1val = sum1[i]; double avg1 = avg_data[i]; int _count = count_data[i]; for( j = 0; j <= i; j++ ) { double avg2 = avg2_data[j]; double cov_val = prod_data[j] - avg1 * sum2[j] - avg2 * s1val + avg1 * avg2 * _count; cov_val = (_count > 1) ? cov_val / (_count - 1) : cov_val; cov_data[j] = cov_val; } } CV_CALL( cvCompleteSymm( cov, 1 )); CV_CALL( cvSVD( cov, w, cov_rotate_mats[cls], 0, CV_SVD_U_T )); CV_CALL( cvMaxS( w, min_variation, w )); for( j = 0; j < _var_count; j++ ) det *= w->data.db[j]; CV_CALL( cvDiv( NULL, w, w )); c->data.db[cls] = det > 0 ? log(det) : -700; } result = true; __END__; if( !result || cvGetErrStatus() < 0 ) clear(); cvReleaseMat( &cov ); cvReleaseMat( &__cls_labels ); cvReleaseMat( &__var_idx ); cvFree( &train_data ); return result; } struct predict_body : cv::ParallelLoopBody { predict_body(CvMat* _c, CvMat** _cov_rotate_mats, CvMat** _inv_eigen_values, CvMat** _avg, const CvMat* _samples, const int* _vidx, CvMat* _cls_labels, CvMat* _results, float* _value, int _var_count1 ) { c = _c; cov_rotate_mats = _cov_rotate_mats; inv_eigen_values = _inv_eigen_values; avg = _avg; samples = _samples; vidx = _vidx; cls_labels = _cls_labels; results = _results; value = _value; var_count1 = _var_count1; } CvMat* c; CvMat** cov_rotate_mats; CvMat** inv_eigen_values; CvMat** avg; const CvMat* samples; const int* vidx; CvMat* cls_labels; CvMat* results; float* value; int var_count1; void operator()( const cv::Range& range ) const { int cls = -1; int rtype = 0, rstep = 0; int nclasses = cls_labels->cols; int _var_count = avg[0]->cols; if (results) { rtype = CV_MAT_TYPE(results->type); rstep = CV_IS_MAT_CONT(results->type) ? 1 : results->step/CV_ELEM_SIZE(rtype); } // allocate memory and initializing headers for calculating cv::AutoBuffer<double> buffer(nclasses + var_count1); CvMat diff = cvMat( 1, var_count1, CV_64FC1, &buffer[0] ); for(int k = range.start; k < range.end; k += 1 ) { int ival; double opt = FLT_MAX; for(int i = 0; i < nclasses; i++ ) { double cur = c->data.db[i]; CvMat* u = cov_rotate_mats[i]; CvMat* w = inv_eigen_values[i]; const double* avg_data = avg[i]->data.db; const float* x = (const float*)(samples->data.ptr + samples->step*k); // cov = u w u' --> cov^(-1) = u w^(-1) u' for(int j = 0; j < _var_count; j++ ) diff.data.db[j] = avg_data[j] - x[vidx ? vidx[j] : j]; cvGEMM( &diff, u, 1, 0, 0, &diff, CV_GEMM_B_T ); for(int j = 0; j < _var_count; j++ ) { double d = diff.data.db[j]; cur += d*d*w->data.db[j]; } if( cur < opt ) { cls = i; opt = cur; } /* probability = exp( -0.5 * cur ) */ } ival = cls_labels->data.i[cls]; if( results ) { if( rtype == CV_32SC1 ) results->data.i[k*rstep] = ival; else results->data.fl[k*rstep] = (float)ival; } if( k == 0 ) *value = (float)ival; } } }; float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results ) const { float value = 0; if( !CV_IS_MAT(samples) || CV_MAT_TYPE(samples->type) != CV_32FC1 || samples->cols != var_all ) CV_Error( CV_StsBadArg, "The input samples must be 32f matrix with the number of columns = var_all" ); if( samples->rows > 1 && !results ) CV_Error( CV_StsNullPtr, "When the number of input samples is >1, the output vector of results must be passed" ); if( results ) { if( !CV_IS_MAT(results) || (CV_MAT_TYPE(results->type) != CV_32FC1 && CV_MAT_TYPE(results->type) != CV_32SC1) || (results->cols != 1 && results->rows != 1) || results->cols + results->rows - 1 != samples->rows ) CV_Error( CV_StsBadArg, "The output array must be integer or floating-point vector " "with the number of elements = number of rows in the input matrix" ); } const int* vidx = var_idx ? var_idx->data.i : 0; cv::parallel_for_(cv::Range(0, samples->rows), predict_body(c, cov_rotate_mats, inv_eigen_values, avg, samples, vidx, cls_labels, results, &value, var_count)); return value; } void CvNormalBayesClassifier::write( CvFileStorage* fs, const char* name ) const { CV_FUNCNAME( "CvNormalBayesClassifier::write" ); __BEGIN__; int nclasses, i; nclasses = cls_labels->cols; cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_NBAYES ); CV_CALL( cvWriteInt( fs, "var_count", var_count )); CV_CALL( cvWriteInt( fs, "var_all", var_all )); if( var_idx ) CV_CALL( cvWrite( fs, "var_idx", var_idx )); CV_CALL( cvWrite( fs, "cls_labels", cls_labels )); CV_CALL( cvStartWriteStruct( fs, "count", CV_NODE_SEQ )); for( i = 0; i < nclasses; i++ ) CV_CALL( cvWrite( fs, NULL, count[i] )); CV_CALL( cvEndWriteStruct( fs )); CV_CALL( cvStartWriteStruct( fs, "sum", CV_NODE_SEQ )); for( i = 0; i < nclasses; i++ ) CV_CALL( cvWrite( fs, NULL, sum[i] )); CV_CALL( cvEndWriteStruct( fs )); CV_CALL( cvStartWriteStruct( fs, "productsum", CV_NODE_SEQ )); for( i = 0; i < nclasses; i++ ) CV_CALL( cvWrite( fs, NULL, productsum[i] )); CV_CALL( cvEndWriteStruct( fs )); CV_CALL( cvStartWriteStruct( fs, "avg", CV_NODE_SEQ )); for( i = 0; i < nclasses; i++ ) CV_CALL( cvWrite( fs, NULL, avg[i] )); CV_CALL( cvEndWriteStruct( fs )); CV_CALL( cvStartWriteStruct( fs, "inv_eigen_values", CV_NODE_SEQ )); for( i = 0; i < nclasses; i++ ) CV_CALL( cvWrite( fs, NULL, inv_eigen_values[i] )); CV_CALL( cvEndWriteStruct( fs )); CV_CALL( cvStartWriteStruct( fs, "cov_rotate_mats", CV_NODE_SEQ )); for( i = 0; i < nclasses; i++ ) CV_CALL( cvWrite( fs, NULL, cov_rotate_mats[i] )); CV_CALL( cvEndWriteStruct( fs )); CV_CALL( cvWrite( fs, "c", c )); cvEndWriteStruct( fs ); __END__; } void CvNormalBayesClassifier::read( CvFileStorage* fs, CvFileNode* root_node ) { bool ok = false; CV_FUNCNAME( "CvNormalBayesClassifier::read" ); __BEGIN__; int nclasses, i; size_t data_size; CvFileNode* node; CvSeq* seq; CvSeqReader reader; clear(); CV_CALL( var_count = cvReadIntByName( fs, root_node, "var_count", -1 )); CV_CALL( var_all = cvReadIntByName( fs, root_node, "var_all", -1 )); CV_CALL( var_idx = (CvMat*)cvReadByName( fs, root_node, "var_idx" )); CV_CALL( cls_labels = (CvMat*)cvReadByName( fs, root_node, "cls_labels" )); if( !cls_labels ) CV_ERROR( CV_StsParseError, "No \"cls_labels\" in NBayes classifier" ); if( cls_labels->cols < 1 ) CV_ERROR( CV_StsBadArg, "Number of classes is less 1" ); if( var_count <= 0 ) CV_ERROR( CV_StsParseError, "The field \"var_count\" of NBayes classifier is missing" ); nclasses = cls_labels->cols; data_size = nclasses*6*sizeof(CvMat*); CV_CALL( count = (CvMat**)cvAlloc( data_size )); memset( count, 0, data_size ); sum = count + nclasses; productsum = sum + nclasses; avg = productsum + nclasses; inv_eigen_values = avg + nclasses; cov_rotate_mats = inv_eigen_values + nclasses; CV_CALL( node = cvGetFileNodeByName( fs, root_node, "count" )); seq = node->data.seq; if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses) CV_ERROR( CV_StsBadArg, "" ); CV_CALL( cvStartReadSeq( seq, &reader, 0 )); for( i = 0; i < nclasses; i++ ) { CV_CALL( count[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr )); CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); } CV_CALL( node = cvGetFileNodeByName( fs, root_node, "sum" )); seq = node->data.seq; if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses) CV_ERROR( CV_StsBadArg, "" ); CV_CALL( cvStartReadSeq( seq, &reader, 0 )); for( i = 0; i < nclasses; i++ ) { CV_CALL( sum[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr )); CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); } CV_CALL( node = cvGetFileNodeByName( fs, root_node, "productsum" )); seq = node->data.seq; if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses) CV_ERROR( CV_StsBadArg, "" ); CV_CALL( cvStartReadSeq( seq, &reader, 0 )); for( i = 0; i < nclasses; i++ ) { CV_CALL( productsum[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr )); CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); } CV_CALL( node = cvGetFileNodeByName( fs, root_node, "avg" )); seq = node->data.seq; if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses) CV_ERROR( CV_StsBadArg, "" ); CV_CALL( cvStartReadSeq( seq, &reader, 0 )); for( i = 0; i < nclasses; i++ ) { CV_CALL( avg[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr )); CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); } CV_CALL( node = cvGetFileNodeByName( fs, root_node, "inv_eigen_values" )); seq = node->data.seq; if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses) CV_ERROR( CV_StsBadArg, "" ); CV_CALL( cvStartReadSeq( seq, &reader, 0 )); for( i = 0; i < nclasses; i++ ) { CV_CALL( inv_eigen_values[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr )); CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); } CV_CALL( node = cvGetFileNodeByName( fs, root_node, "cov_rotate_mats" )); seq = node->data.seq; if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses) CV_ERROR( CV_StsBadArg, "" ); CV_CALL( cvStartReadSeq( seq, &reader, 0 )); for( i = 0; i < nclasses; i++ ) { CV_CALL( cov_rotate_mats[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr )); CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); } CV_CALL( c = (CvMat*)cvReadByName( fs, root_node, "c" )); ok = true; __END__; if( !ok ) clear(); } using namespace cv; CvNormalBayesClassifier::CvNormalBayesClassifier( const Mat& _train_data, const Mat& _responses, const Mat& _var_idx, const Mat& _sample_idx ) { var_count = var_all = 0; var_idx = 0; cls_labels = 0; count = 0; sum = 0; productsum = 0; avg = 0; inv_eigen_values = 0; cov_rotate_mats = 0; c = 0; default_model_name = "my_nb"; CvMat tdata = _train_data, responses = _responses, vidx = _var_idx, sidx = _sample_idx; train(&tdata, &responses, vidx.data.ptr ? &vidx : 0, sidx.data.ptr ? &sidx : 0); } bool CvNormalBayesClassifier::train( const Mat& _train_data, const Mat& _responses, const Mat& _var_idx, const Mat& _sample_idx, bool update ) { CvMat tdata = _train_data, responses = _responses, vidx = _var_idx, sidx = _sample_idx; return train(&tdata, &responses, vidx.data.ptr ? &vidx : 0, sidx.data.ptr ? &sidx : 0, update); } float CvNormalBayesClassifier::predict( const Mat& _samples, Mat* _results ) const { CvMat samples = _samples, results, *presults = 0; if( _results ) { if( !(_results->data && _results->type() == CV_32F && (_results->cols == 1 || _results->rows == 1) && _results->cols + _results->rows - 1 == _samples.rows) ) _results->create(_samples.rows, 1, CV_32F); presults = &(results = *_results); } return predict(&samples, presults); } /* End of file. */