/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #if 0 ML_IMPL int icvCmpIntegers (const void* a, const void* b) {return *(const int*)a - *(const int*)b;} /****************************************************************************************\ * Cross-validation algorithms realizations * \****************************************************************************************/ // Return pointer to trainIdx. Function DOES NOT FILL this matrix! ML_IMPL const CvMat* cvCrossValGetTrainIdxMatrix (const CvStatModel* estimateModel) { CvMat* result = NULL; CV_FUNCNAME ("cvCrossValGetTrainIdxMatrix"); __BEGIN__ if (!CV_IS_CROSSVAL(estimateModel)) { CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); } result = ((CvCrossValidationModel*)estimateModel)->sampleIdxTrain; __END__ return result; } // End of cvCrossValGetTrainIdxMatrix /****************************************************************************************/ // Return pointer to checkIdx. Function DOES NOT FILL this matrix! ML_IMPL const CvMat* cvCrossValGetCheckIdxMatrix (const CvStatModel* estimateModel) { CvMat* result = NULL; CV_FUNCNAME ("cvCrossValGetCheckIdxMatrix"); __BEGIN__ if (!CV_IS_CROSSVAL (estimateModel)) { CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); } result = ((CvCrossValidationModel*)estimateModel)->sampleIdxEval; __END__ return result; } // End of cvCrossValGetCheckIdxMatrix /****************************************************************************************/ // Create new Idx-matrix for next classifiers training and return code of result. // Result is 0 if function can't make next step (error input or folds are finished), // it is 1 if all was correct, and it is 2 if current fold wasn't' checked. ML_IMPL int cvCrossValNextStep (CvStatModel* estimateModel) { int result = 0; CV_FUNCNAME ("cvCrossValGetNextTrainIdx"); __BEGIN__ CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel; int k, fold; if (!CV_IS_CROSSVAL (estimateModel)) { CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); } fold = ++crVal->current_fold; if (fold >= crVal->folds_all) { if (fold == crVal->folds_all) EXIT; else { CV_ERROR (CV_StsInternal, "All iterations has end long ago"); } } k = crVal->folds[fold + 1] - crVal->folds[fold]; crVal->sampleIdxTrain->data.i = crVal->sampleIdxAll + crVal->folds[fold + 1]; crVal->sampleIdxTrain->cols = crVal->samples_all - k; crVal->sampleIdxEval->data.i = crVal->sampleIdxAll + crVal->folds[fold]; crVal->sampleIdxEval->cols = k; if (crVal->is_checked) { crVal->is_checked = 0; result = 1; } else { result = 2; } __END__ return result; } /****************************************************************************************/ // Do checking part of loop of cross-validations metod. ML_IMPL void cvCrossValCheckClassifier (CvStatModel* estimateModel, const CvStatModel* model, const CvMat* trainData, int sample_t_flag, const CvMat* trainClasses) { CV_FUNCNAME ("cvCrossValCheckClassifier "); __BEGIN__ CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel; int i, j, k; int* data; float* responses_fl; int step; float* responses_result; int* responses_i; double te, te1; double sum_c, sum_p, sum_pp, sum_cp, sum_cc, sq_err; // Check input data to correct values. if (!CV_IS_CROSSVAL (estimateModel)) { CV_ERROR (CV_StsBadArg,"First parameter point to not CvCrossValidationModel"); } if (!CV_IS_STAT_MODEL (model)) { CV_ERROR (CV_StsBadArg, "Second parameter point to not CvStatModel"); } if (!CV_IS_MAT (trainData)) { CV_ERROR (CV_StsBadArg, "Third parameter point to not CvMat"); } if (!CV_IS_MAT (trainClasses)) { CV_ERROR (CV_StsBadArg, "Fifth parameter point to not CvMat"); } if (crVal->is_checked) { CV_ERROR (CV_StsInternal, "This iterations already was checked"); } // Initialize. k = crVal->sampleIdxEval->cols; data = crVal->sampleIdxEval->data.i; // Eval tested feature vectors. CV_CALL (cvStatModelMultiPredict (model, trainData, sample_t_flag, crVal->predict_results, NULL, crVal->sampleIdxEval)); // Count number if correct results. responses_result = crVal->predict_results->data.fl; if (crVal->is_regression) { sum_c = sum_p = sum_pp = sum_cp = sum_cc = sq_err = 0; if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1) { responses_fl = trainClasses->data.fl; step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float); for (i = 0; i < k; i++) { te = responses_result[*data]; te1 = responses_fl[*data * step]; sum_c += te1; sum_p += te; sum_cc += te1 * te1; sum_pp += te * te; sum_cp += te1 * te; te -= te1; sq_err += te * te; data++; } } else { responses_i = trainClasses->data.i; step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int); for (i = 0; i < k; i++) { te = responses_result[*data]; te1 = responses_i[*data * step]; sum_c += te1; sum_p += te; sum_cc += te1 * te1; sum_pp += te * te; sum_cp += te1 * te; te -= te1; sq_err += te * te; data++; } } // Fixing new internal values of accuracy. crVal->sum_correct += sum_c; crVal->sum_predict += sum_p; crVal->sum_cc += sum_cc; crVal->sum_pp += sum_pp; crVal->sum_cp += sum_cp; crVal->sq_error += sq_err; } else { if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1) { responses_fl = trainClasses->data.fl; step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float); for (i = 0, j = 0; i < k; i++) { if (cvRound (responses_result[*data]) == cvRound (responses_fl[*data * step])) j++; data++; } } else { responses_i = trainClasses->data.i; step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int); for (i = 0, j = 0; i < k; i++) { if (cvRound (responses_result[*data]) == responses_i[*data * step]) j++; data++; } } // Fixing new internal values of accuracy. crVal->correct_results += j; } // Fixing that this fold already checked. crVal->all_results += k; crVal->is_checked = 1; __END__ } // End of cvCrossValCheckClassifier /****************************************************************************************/ // Return current accuracy. ML_IMPL float cvCrossValGetResult (const CvStatModel* estimateModel, float* correlation) { float result = 0; CV_FUNCNAME ("cvCrossValGetResult"); __BEGIN__ double te, te1; CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel; if (!CV_IS_CROSSVAL (estimateModel)) { CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); } if (crVal->all_results) { if (crVal->is_regression) { result = ((float)crVal->sq_error) / crVal->all_results; if (correlation) { te = crVal->all_results * crVal->sum_cp - crVal->sum_correct * crVal->sum_predict; te *= te; te1 = (crVal->all_results * crVal->sum_cc - crVal->sum_correct * crVal->sum_correct) * (crVal->all_results * crVal->sum_pp - crVal->sum_predict * crVal->sum_predict); *correlation = (float)(te / te1); } } else { result = ((float)crVal->correct_results) / crVal->all_results; } } __END__ return result; } /****************************************************************************************/ // Reset cross-validation EstimateModel to state the same as it was immidiatly after // its creating. ML_IMPL void cvCrossValReset (CvStatModel* estimateModel) { CV_FUNCNAME ("cvCrossValReset"); __BEGIN__ CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel; if (!CV_IS_CROSSVAL (estimateModel)) { CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); } crVal->current_fold = -1; crVal->is_checked = 1; crVal->all_results = 0; crVal->correct_results = 0; crVal->sq_error = 0; crVal->sum_correct = 0; crVal->sum_predict = 0; crVal->sum_cc = 0; crVal->sum_pp = 0; crVal->sum_cp = 0; __END__ } /****************************************************************************************/ // This function is standart CvStatModel field to release cross-validation EstimateModel. ML_IMPL void cvReleaseCrossValidationModel (CvStatModel** model) { CvCrossValidationModel* pModel; CV_FUNCNAME ("cvReleaseCrossValidationModel"); __BEGIN__ if (!model) { CV_ERROR (CV_StsNullPtr, ""); } pModel = (CvCrossValidationModel*)*model; if (!pModel) { return; } if (!CV_IS_CROSSVAL (pModel)) { CV_ERROR (CV_StsBadArg, ""); } cvFree (&pModel->sampleIdxAll); cvFree (&pModel->folds); cvReleaseMat (&pModel->sampleIdxEval); cvReleaseMat (&pModel->sampleIdxTrain); cvReleaseMat (&pModel->predict_results); cvFree (model); __END__ } // End of cvReleaseCrossValidationModel. /****************************************************************************************/ // This function create cross-validation EstimateModel. ML_IMPL CvStatModel* cvCreateCrossValidationEstimateModel( int samples_all, const CvStatModelParams* estimateParams, const CvMat* sampleIdx) { CvStatModel* model = NULL; CvCrossValidationModel* crVal = NULL; CV_FUNCNAME ("cvCreateCrossValidationEstimateModel"); __BEGIN__ int k_fold = 10; int i, j, k, s_len; int samples_selected; CvRNG rng; CvRNG* prng; int* res_s_data; int* te_s_data; int* folds; rng = cvRNG(cvGetTickCount()); cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng); // Check input parameters. if (estimateParams) k_fold = ((CvCrossValidationParams*)estimateParams)->k_fold; if (!k_fold) { CV_ERROR (CV_StsBadArg, "Error in parameters of cross-validation (k_fold == 0)!"); } if (samples_all <= 0) { CV_ERROR (CV_StsBadArg, "<samples_all> should be positive!"); } // Alloc memory and fill standart StatModel's fields. CV_CALL (crVal = (CvCrossValidationModel*)cvCreateStatModel ( CV_STAT_MODEL_MAGIC_VAL | CV_CROSSVAL_MAGIC_VAL, sizeof(CvCrossValidationModel), cvReleaseCrossValidationModel, NULL, NULL)); crVal->current_fold = -1; crVal->folds_all = k_fold; if (estimateParams && ((CvCrossValidationParams*)estimateParams)->is_regression) crVal->is_regression = 1; else crVal->is_regression = 0; if (estimateParams && ((CvCrossValidationParams*)estimateParams)->rng) prng = ((CvCrossValidationParams*)estimateParams)->rng; else prng = &rng; // Check and preprocess sample indices. if (sampleIdx) { int s_step; int s_type = 0; if (!CV_IS_MAT (sampleIdx)) CV_ERROR (CV_StsBadArg, "Invalid sampleIdx array"); if (sampleIdx->rows != 1 && sampleIdx->cols != 1) CV_ERROR (CV_StsBadSize, "sampleIdx array must be 1-dimensional"); s_len = sampleIdx->rows + sampleIdx->cols - 1; s_step = sampleIdx->rows == 1 ? 1 : sampleIdx->step / CV_ELEM_SIZE(sampleIdx->type); s_type = CV_MAT_TYPE (sampleIdx->type); switch (s_type) { case CV_8UC1: case CV_8SC1: { uchar* s_data = sampleIdx->data.ptr; // sampleIdx is array of 1's and 0's - // i.e. it is a mask of the selected samples if( s_len != samples_all ) CV_ERROR (CV_StsUnmatchedSizes, "Sample mask should contain as many elements as the total number of samples"); samples_selected = 0; for (i = 0; i < s_len; i++) samples_selected += s_data[i * s_step] != 0; if (samples_selected == 0) CV_ERROR (CV_StsOutOfRange, "No samples is selected!"); } s_len = samples_selected; break; case CV_32SC1: if (s_len > samples_all) CV_ERROR (CV_StsOutOfRange, "sampleIdx array may not contain more elements than the total number of samples"); samples_selected = s_len; break; default: CV_ERROR (CV_StsUnsupportedFormat, "Unsupported sampleIdx array data type " "(it should be 8uC1, 8sC1 or 32sC1)"); } // Alloc additional memory for internal Idx and fill it. /*!!*/ CV_CALL (res_s_data = crVal->sampleIdxAll = (int*)cvAlloc (2 * s_len * sizeof(int))); if (s_type < CV_32SC1) { uchar* s_data = sampleIdx->data.ptr; for (i = 0; i < s_len; i++) if (s_data[i * s_step]) { *res_s_data++ = i; } res_s_data = crVal->sampleIdxAll; } else { int* s_data = sampleIdx->data.i; int out_of_order = 0; for (i = 0; i < s_len; i++) { res_s_data[i] = s_data[i * s_step]; if (i > 0 && res_s_data[i] < res_s_data[i - 1]) out_of_order = 1; } if (out_of_order) qsort (res_s_data, s_len, sizeof(res_s_data[0]), icvCmpIntegers); if (res_s_data[0] < 0 || res_s_data[s_len - 1] >= samples_all) CV_ERROR (CV_StsBadArg, "There are out-of-range sample indices"); for (i = 1; i < s_len; i++) if (res_s_data[i] <= res_s_data[i - 1]) CV_ERROR (CV_StsBadArg, "There are duplicated"); } } else // if (sampleIdx) { // Alloc additional memory for internal Idx and fill it. s_len = samples_all; CV_CALL (res_s_data = crVal->sampleIdxAll = (int*)cvAlloc (2 * s_len * sizeof(int))); for (i = 0; i < s_len; i++) { *res_s_data++ = i; } res_s_data = crVal->sampleIdxAll; } // if (sampleIdx) ... else // Resort internal Idx. te_s_data = res_s_data + s_len; for (i = s_len; i > 1; i--) { j = cvRandInt (prng) % i; k = *(--te_s_data); *te_s_data = res_s_data[j]; res_s_data[j] = k; } // Duplicate resorted internal Idx. // It will be used to simplify operation of getting trainIdx. te_s_data = res_s_data + s_len; for (i = 0; i < s_len; i++) { *te_s_data++ = *res_s_data++; } // Cut sampleIdxAll to parts. if (k_fold > 0) { if (k_fold > s_len) { CV_ERROR (CV_StsBadArg, "Error in parameters of cross-validation ('k_fold' > #samples)!"); } folds = crVal->folds = (int*) cvAlloc ((k_fold + 1) * sizeof (int)); *folds++ = 0; for (i = 1; i < k_fold; i++) { *folds++ = cvRound (i * s_len * 1. / k_fold); } *folds = s_len; folds = crVal->folds; crVal->max_fold_size = (s_len - 1) / k_fold + 1; } else { k = -k_fold; crVal->max_fold_size = k; if (k >= s_len) { CV_ERROR (CV_StsBadArg, "Error in parameters of cross-validation (-'k_fold' > #samples)!"); } crVal->folds_all = k = (s_len - 1) / k + 1; folds = crVal->folds = (int*) cvAlloc ((k + 1) * sizeof (int)); for (i = 0; i < k; i++) { *folds++ = -i * k_fold; } *folds = s_len; folds = crVal->folds; } // Prepare other internal fields to working. CV_CALL (crVal->predict_results = cvCreateMat (1, samples_all, CV_32FC1)); CV_CALL (crVal->sampleIdxEval = cvCreateMatHeader (1, 1, CV_32SC1)); CV_CALL (crVal->sampleIdxTrain = cvCreateMatHeader (1, 1, CV_32SC1)); crVal->sampleIdxEval->cols = 0; crVal->sampleIdxTrain->cols = 0; crVal->samples_all = s_len; crVal->is_checked = 1; crVal->getTrainIdxMat = cvCrossValGetTrainIdxMatrix; crVal->getCheckIdxMat = cvCrossValGetCheckIdxMatrix; crVal->nextStep = cvCrossValNextStep; crVal->check = cvCrossValCheckClassifier; crVal->getResult = cvCrossValGetResult; crVal->reset = cvCrossValReset; model = (CvStatModel*)crVal; __END__ if (!model) { cvReleaseCrossValidationModel ((CvStatModel**)&crVal); } return model; } // End of cvCreateCrossValidationEstimateModel /****************************************************************************************\ * Extended interface with backcalls for models * \****************************************************************************************/ ML_IMPL float cvCrossValidation (const CvMat* trueData, int tflag, const CvMat* trueClasses, CvStatModel* (*createClassifier) (const CvMat*, int, const CvMat*, const CvClassifierTrainParams*, const CvMat*, const CvMat*, const CvMat*, const CvMat*), const CvClassifierTrainParams* estimateParams, const CvClassifierTrainParams* trainParams, const CvMat* compIdx, const CvMat* sampleIdx, CvStatModel** pCrValModel, const CvMat* typeMask, const CvMat* missedMeasurementMask) { CvCrossValidationModel* crVal = NULL; float result = 0; CvStatModel* pClassifier = NULL; CV_FUNCNAME ("cvCrossValidation"); __BEGIN__ const CvMat* trainDataIdx; int samples_all; // checking input data if ((createClassifier) == NULL) { CV_ERROR (CV_StsNullPtr, "Null pointer to functiion which create classifier"); } if (pCrValModel && *pCrValModel && !CV_IS_CROSSVAL(*pCrValModel)) { CV_ERROR (CV_StsBadArg, "<pCrValModel> point to not cross-validation model"); } // initialization if (pCrValModel && *pCrValModel) { crVal = (CvCrossValidationModel*)*pCrValModel; crVal->reset ((CvStatModel*)crVal); } else { samples_all = ((tflag) ? trueData->rows : trueData->cols); CV_CALL (crVal = (CvCrossValidationModel*) cvCreateCrossValidationEstimateModel (samples_all, estimateParams, sampleIdx)); } CV_CALL (trainDataIdx = crVal->getTrainIdxMat ((CvStatModel*)crVal)); // operation loop for (; crVal->nextStep((CvStatModel*)crVal) != 0; ) { CV_CALL (pClassifier = createClassifier (trueData, tflag, trueClasses, trainParams, compIdx, trainDataIdx, typeMask, missedMeasurementMask)); CV_CALL (crVal->check ((CvStatModel*)crVal, pClassifier, trueData, tflag, trueClasses)); pClassifier->release (&pClassifier); } // Get result and fill output field. CV_CALL (result = crVal->getResult ((CvStatModel*)crVal, 0)); if (pCrValModel && !*pCrValModel) *pCrValModel = (CvStatModel*)crVal; __END__ // Free all memory that should be freed. if (pClassifier) pClassifier->release (&pClassifier); if (crVal && (!pCrValModel || !*pCrValModel)) crVal->release ((CvStatModel**)&crVal); return result; } // End of cvCrossValidation #endif /* End of file */