/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

/*======================= KALMAN FILTER =========================*/
/* State vector is (x,y,w,h,dx,dy,dw,dh). */
/* Measurement is (x,y,w,h). */

#if 0
/* Dynamic matrix A: */
const float A8[] = { 1, 0, 0, 0, 1, 0, 0, 0,
                     0, 1, 0, 0, 0, 1, 0, 0,
                     0, 0, 1, 0, 0, 0, 1, 0,
                     0, 0, 0, 1, 0, 0, 0, 1,
                     0, 0, 0, 0, 1, 0, 0, 0,
                     0, 0, 0, 0, 0, 1, 0, 0,
                     0, 0, 0, 0, 0, 0, 1, 0,
                     0, 0, 0, 0, 0, 0, 0, 1};

/* Measurement matrix H: */
const float H8[] = { 1, 0, 0, 0, 0, 0, 0, 0,
                     0, 1, 0, 0, 0, 0, 0, 0,
                     0, 0, 1, 0, 0, 0, 0, 0,
                     0, 0, 0, 1, 0, 0, 0, 0};

#define STATE_NUM 8
#define A A8
#define H H8

#else

/* Matrices for zero size velocity: */
/* Dinamic matrix A: */
const float A6[] = { 1, 0, 0, 0, 1, 0,
                     0, 1, 0, 0, 0, 1,
                     0, 0, 1, 0, 0, 0,
                     0, 0, 0, 1, 0, 0,
                     0, 0, 0, 0, 1, 0,
                     0, 0, 0, 0, 0, 1};

/* Measurement matrix H: */
const float H6[] = { 1, 0, 0, 0, 0, 0,
                     0, 1, 0, 0, 0, 0,
                     0, 0, 1, 0, 0, 0,
                     0, 0, 0, 1, 0, 0};

#define STATE_NUM 6
#define A A6
#define H H6

#endif

class CvBlobTrackPostProcKalman:public CvBlobTrackPostProcOne
{

private:
    CvBlob      m_Blob;
    CvKalman*   m_pKalman;
    int         m_Frame;
    float       m_ModelNoise;
    float       m_DataNoisePos;
    float       m_DataNoiseSize;

public:
    CvBlobTrackPostProcKalman();
   ~CvBlobTrackPostProcKalman();
    CvBlob* Process(CvBlob* pBlob);
    void Release();
    virtual void ParamUpdate();
}; /* class CvBlobTrackPostProcKalman */


CvBlobTrackPostProcKalman::CvBlobTrackPostProcKalman()
{
    m_ModelNoise = 1e-6f;
    m_DataNoisePos = 1e-6f;
    m_DataNoiseSize = 1e-1f;

    #if STATE_NUM>6
        m_DataNoiseSize *= (float)pow(20.,2.);
    #else
        m_DataNoiseSize /= (float)pow(20.,2.);
    #endif

    AddParam("ModelNoise",&m_ModelNoise);
    AddParam("DataNoisePos",&m_DataNoisePos);
    AddParam("DataNoiseSize",&m_DataNoiseSize);

    m_Frame = 0;
    m_pKalman = cvCreateKalman(STATE_NUM,4);
    memcpy( m_pKalman->transition_matrix->data.fl, A, sizeof(A));
    memcpy( m_pKalman->measurement_matrix->data.fl, H, sizeof(H));

    cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
    cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
    cvSetIdentity( m_pKalman->error_cov_post, cvRealScalar(1));
    cvZero(m_pKalman->state_post);
    cvZero(m_pKalman->state_pre);

    SetModuleName("Kalman");
}

CvBlobTrackPostProcKalman::~CvBlobTrackPostProcKalman()
{
    cvReleaseKalman(&m_pKalman);
}

void CvBlobTrackPostProcKalman::ParamUpdate()
{
    cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
    cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
}

CvBlob* CvBlobTrackPostProcKalman::Process(CvBlob* pBlob)
{
    CvBlob* pBlobRes = &m_Blob;
    float   Z[4];
    CvMat   Zmat = cvMat(4,1,CV_32F,Z);
    m_Blob = pBlob[0];

    if(m_Frame < 2)
    {   /* First call: */
        m_pKalman->state_post->data.fl[0+4] = CV_BLOB_X(pBlob)-m_pKalman->state_post->data.fl[0];
        m_pKalman->state_post->data.fl[1+4] = CV_BLOB_Y(pBlob)-m_pKalman->state_post->data.fl[1];
        if(m_pKalman->DP>6)
        {
            m_pKalman->state_post->data.fl[2+4] = CV_BLOB_WX(pBlob)-m_pKalman->state_post->data.fl[2];
            m_pKalman->state_post->data.fl[3+4] = CV_BLOB_WY(pBlob)-m_pKalman->state_post->data.fl[3];
        }
        m_pKalman->state_post->data.fl[0] = CV_BLOB_X(pBlob);
        m_pKalman->state_post->data.fl[1] = CV_BLOB_Y(pBlob);
        m_pKalman->state_post->data.fl[2] = CV_BLOB_WX(pBlob);
        m_pKalman->state_post->data.fl[3] = CV_BLOB_WY(pBlob);
    }
    else
    {   /* Nonfirst call: */
        cvKalmanPredict(m_pKalman,0);
        Z[0] = CV_BLOB_X(pBlob);
        Z[1] = CV_BLOB_Y(pBlob);
        Z[2] = CV_BLOB_WX(pBlob);
        Z[3] = CV_BLOB_WY(pBlob);
        cvKalmanCorrect(m_pKalman,&Zmat);
        cvMatMulAdd(m_pKalman->measurement_matrix, m_pKalman->state_post, NULL, &Zmat);
        CV_BLOB_X(pBlobRes) = Z[0];
        CV_BLOB_Y(pBlobRes) = Z[1];
//        CV_BLOB_WX(pBlobRes) = Z[2];
//        CV_BLOB_WY(pBlobRes) = Z[3];
    }
    m_Frame++;
    return pBlobRes;
}

void CvBlobTrackPostProcKalman::Release()
{
    delete this;
}

static CvBlobTrackPostProcOne* cvCreateModuleBlobTrackPostProcKalmanOne()
{
    return (CvBlobTrackPostProcOne*) new CvBlobTrackPostProcKalman;
}

CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcKalman()
{
    return cvCreateBlobTrackPostProcList(cvCreateModuleBlobTrackPostProcKalmanOne);
}
/*======================= KALMAN FILTER =========================*/



/*======================= KALMAN PREDICTOR =========================*/
class CvBlobTrackPredictKalman:public CvBlobTrackPredictor
{

private:
    CvBlob      m_BlobPredict;
    CvKalman*   m_pKalman;
    int         m_Frame;
    float       m_ModelNoise;
    float       m_DataNoisePos;
    float       m_DataNoiseSize;

public:
    CvBlobTrackPredictKalman();
    ~CvBlobTrackPredictKalman();
    CvBlob* Predict();
    void Update(CvBlob* pBlob);
    virtual void ParamUpdate();
    void Release()
    {
        delete this;
    }
};  /* class CvBlobTrackPredictKalman */


void CvBlobTrackPredictKalman::ParamUpdate()
{
    cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
    cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
}

CvBlobTrackPredictKalman::CvBlobTrackPredictKalman()
{
    m_ModelNoise = 1e-6f;
    m_DataNoisePos = 1e-6f;
    m_DataNoiseSize = 1e-1f;

    #if STATE_NUM>6
        m_DataNoiseSize *= (float)pow(20.,2.);
    #else
        m_DataNoiseSize /= (float)pow(20.,2.);
    #endif

    AddParam("ModelNoise",&m_ModelNoise);
    AddParam("DataNoisePos",&m_DataNoisePos);
    AddParam("DataNoiseSize",&m_DataNoiseSize);

    m_Frame = 0;
    m_pKalman = cvCreateKalman(STATE_NUM,4);
    memcpy( m_pKalman->transition_matrix->data.fl, A, sizeof(A));
    memcpy( m_pKalman->measurement_matrix->data.fl, H, sizeof(H));

    cvSetIdentity( m_pKalman->process_noise_cov, cvRealScalar(m_ModelNoise) );
    cvSetIdentity( m_pKalman->measurement_noise_cov, cvRealScalar(m_DataNoisePos) );
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 2,2) = m_DataNoiseSize;
    CV_MAT_ELEM(*m_pKalman->measurement_noise_cov, float, 3,3) = m_DataNoiseSize;
    cvSetIdentity( m_pKalman->error_cov_post, cvRealScalar(1));
    cvZero(m_pKalman->state_post);
    cvZero(m_pKalman->state_pre);

    SetModuleName("Kalman");
}

CvBlobTrackPredictKalman::~CvBlobTrackPredictKalman()
{
    cvReleaseKalman(&m_pKalman);
}

CvBlob* CvBlobTrackPredictKalman::Predict()
{
    if(m_Frame >= 2)
    {
        cvKalmanPredict(m_pKalman,0);
        m_BlobPredict.x = m_pKalman->state_pre->data.fl[0];
        m_BlobPredict.y = m_pKalman->state_pre->data.fl[1];
        m_BlobPredict.w = m_pKalman->state_pre->data.fl[2];
        m_BlobPredict.h = m_pKalman->state_pre->data.fl[3];
    }
    return &m_BlobPredict;
}

void CvBlobTrackPredictKalman::Update(CvBlob* pBlob)
{
    float   Z[4];
    CvMat   Zmat = cvMat(4,1,CV_32F,Z);
    m_BlobPredict = pBlob[0];

    if(m_Frame < 2)
    {   /* First call: */
        m_pKalman->state_post->data.fl[0+4] = CV_BLOB_X(pBlob)-m_pKalman->state_post->data.fl[0];
        m_pKalman->state_post->data.fl[1+4] = CV_BLOB_Y(pBlob)-m_pKalman->state_post->data.fl[1];
        if(m_pKalman->DP>6)
        {
            m_pKalman->state_post->data.fl[2+4] = CV_BLOB_WX(pBlob)-m_pKalman->state_post->data.fl[2];
            m_pKalman->state_post->data.fl[3+4] = CV_BLOB_WY(pBlob)-m_pKalman->state_post->data.fl[3];
        }
        m_pKalman->state_post->data.fl[0] = CV_BLOB_X(pBlob);
        m_pKalman->state_post->data.fl[1] = CV_BLOB_Y(pBlob);
        m_pKalman->state_post->data.fl[2] = CV_BLOB_WX(pBlob);
        m_pKalman->state_post->data.fl[3] = CV_BLOB_WY(pBlob);
    }
    else
    {   /* Nonfirst call: */
        Z[0] = CV_BLOB_X(pBlob);
        Z[1] = CV_BLOB_Y(pBlob);
        Z[2] = CV_BLOB_WX(pBlob);
        Z[3] = CV_BLOB_WY(pBlob);
        cvKalmanCorrect(m_pKalman,&Zmat);
    }

    cvKalmanPredict(m_pKalman,0);

    m_Frame++;

}   /* Update. */

CvBlobTrackPredictor* cvCreateModuleBlobTrackPredictKalman()
{
    return (CvBlobTrackPredictor*) new CvBlobTrackPredictKalman;
}
/*======================= KALMAN PREDICTOR =========================*/