/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include "opencv2/gpu/device/common.hpp" #include "opencv2/gpu/device/emulation.hpp" #include "opencv2/gpu/device/transform.hpp" #include "opencv2/gpu/device/functional.hpp" #include "opencv2/gpu/device/utility.hpp" using namespace cv::gpu; using namespace cv::gpu::device; namespace canny { struct L1 : binary_function<int, int, float> { __device__ __forceinline__ float operator ()(int x, int y) const { return ::abs(x) + ::abs(y); } __host__ __device__ __forceinline__ L1() {} __host__ __device__ __forceinline__ L1(const L1&) {} }; struct L2 : binary_function<int, int, float> { __device__ __forceinline__ float operator ()(int x, int y) const { return ::sqrtf(x * x + y * y); } __host__ __device__ __forceinline__ L2() {} __host__ __device__ __forceinline__ L2(const L2&) {} }; } namespace cv { namespace gpu { namespace device { template <> struct TransformFunctorTraits<canny::L1> : DefaultTransformFunctorTraits<canny::L1> { enum { smart_shift = 4 }; }; template <> struct TransformFunctorTraits<canny::L2> : DefaultTransformFunctorTraits<canny::L2> { enum { smart_shift = 4 }; }; }}} namespace canny { texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_src(false, cudaFilterModePoint, cudaAddressModeClamp); struct SrcTex { const int xoff; const int yoff; __host__ SrcTex(int _xoff, int _yoff) : xoff(_xoff), yoff(_yoff) {} __device__ __forceinline__ int operator ()(int y, int x) const { return tex2D(tex_src, x + xoff, y + yoff); } }; template <class Norm> __global__ void calcMagnitudeKernel(const SrcTex src, PtrStepi dx, PtrStepi dy, PtrStepSzf mag, const Norm norm) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y >= mag.rows || x >= mag.cols) return; int dxVal = (src(y - 1, x + 1) + 2 * src(y, x + 1) + src(y + 1, x + 1)) - (src(y - 1, x - 1) + 2 * src(y, x - 1) + src(y + 1, x - 1)); int dyVal = (src(y + 1, x - 1) + 2 * src(y + 1, x) + src(y + 1, x + 1)) - (src(y - 1, x - 1) + 2 * src(y - 1, x) + src(y - 1, x + 1)); dx(y, x) = dxVal; dy(y, x) = dyVal; mag(y, x) = norm(dxVal, dyVal); } void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad) { const dim3 block(16, 16); const dim3 grid(divUp(mag.cols, block.x), divUp(mag.rows, block.y)); bindTexture(&tex_src, srcWhole); SrcTex src(xoff, yoff); if (L2Grad) { L2 norm; calcMagnitudeKernel<<<grid, block>>>(src, dx, dy, mag, norm); } else { L1 norm; calcMagnitudeKernel<<<grid, block>>>(src, dx, dy, mag, norm); } cudaSafeCall( cudaGetLastError() ); cudaSafeCall(cudaThreadSynchronize()); } void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad) { if (L2Grad) { L2 norm; transform(dx, dy, mag, norm, WithOutMask(), 0); } else { L1 norm; transform(dx, dy, mag, norm, WithOutMask(), 0); } } } ////////////////////////////////////////////////////////////////////////////////////////// namespace canny { texture<float, cudaTextureType2D, cudaReadModeElementType> tex_mag(false, cudaFilterModePoint, cudaAddressModeClamp); __global__ void calcMapKernel(const PtrStepSzi dx, const PtrStepi dy, PtrStepi map, const float low_thresh, const float high_thresh) { const int CANNY_SHIFT = 15; const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5); const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x == 0 || x >= dx.cols - 1 || y == 0 || y >= dx.rows - 1) return; int dxVal = dx(y, x); int dyVal = dy(y, x); const int s = (dxVal ^ dyVal) < 0 ? -1 : 1; const float m = tex2D(tex_mag, x, y); dxVal = ::abs(dxVal); dyVal = ::abs(dyVal); // 0 - the pixel can not belong to an edge // 1 - the pixel might belong to an edge // 2 - the pixel does belong to an edge int edge_type = 0; if (m > low_thresh) { const int tg22x = dxVal * TG22; const int tg67x = tg22x + ((dxVal + dxVal) << CANNY_SHIFT); dyVal <<= CANNY_SHIFT; if (dyVal < tg22x) { if (m > tex2D(tex_mag, x - 1, y) && m >= tex2D(tex_mag, x + 1, y)) edge_type = 1 + (int)(m > high_thresh); } else if(dyVal > tg67x) { if (m > tex2D(tex_mag, x, y - 1) && m >= tex2D(tex_mag, x, y + 1)) edge_type = 1 + (int)(m > high_thresh); } else { if (m > tex2D(tex_mag, x - s, y - 1) && m >= tex2D(tex_mag, x + s, y + 1)) edge_type = 1 + (int)(m > high_thresh); } } map(y, x) = edge_type; } void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh) { const dim3 block(16, 16); const dim3 grid(divUp(dx.cols, block.x), divUp(dx.rows, block.y)); bindTexture(&tex_mag, mag); calcMapKernel<<<grid, block>>>(dx, dy, map, low_thresh, high_thresh); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } } ////////////////////////////////////////////////////////////////////////////////////////// namespace canny { __device__ int counter = 0; __device__ __forceinline__ bool checkIdx(int y, int x, int rows, int cols) { return (y >= 0) && (y < rows) && (x >= 0) && (x < cols); } __global__ void edgesHysteresisLocalKernel(PtrStepSzi map, short2* st) { __shared__ volatile int smem[18][18]; const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; smem[threadIdx.y + 1][threadIdx.x + 1] = checkIdx(y, x, map.rows, map.cols) ? map(y, x) : 0; if (threadIdx.y == 0) smem[0][threadIdx.x + 1] = checkIdx(y - 1, x, map.rows, map.cols) ? map(y - 1, x) : 0; if (threadIdx.y == blockDim.y - 1) smem[blockDim.y + 1][threadIdx.x + 1] = checkIdx(y + 1, x, map.rows, map.cols) ? map(y + 1, x) : 0; if (threadIdx.x == 0) smem[threadIdx.y + 1][0] = checkIdx(y, x - 1, map.rows, map.cols) ? map(y, x - 1) : 0; if (threadIdx.x == blockDim.x - 1) smem[threadIdx.y + 1][blockDim.x + 1] = checkIdx(y, x + 1, map.rows, map.cols) ? map(y, x + 1) : 0; if (threadIdx.x == 0 && threadIdx.y == 0) smem[0][0] = checkIdx(y - 1, x - 1, map.rows, map.cols) ? map(y - 1, x - 1) : 0; if (threadIdx.x == blockDim.x - 1 && threadIdx.y == 0) smem[0][blockDim.x + 1] = checkIdx(y - 1, x + 1, map.rows, map.cols) ? map(y - 1, x + 1) : 0; if (threadIdx.x == 0 && threadIdx.y == blockDim.y - 1) smem[blockDim.y + 1][0] = checkIdx(y + 1, x - 1, map.rows, map.cols) ? map(y + 1, x - 1) : 0; if (threadIdx.x == blockDim.x - 1 && threadIdx.y == blockDim.y - 1) smem[blockDim.y + 1][blockDim.x + 1] = checkIdx(y + 1, x + 1, map.rows, map.cols) ? map(y + 1, x + 1) : 0; __syncthreads(); if (x >= map.cols || y >= map.rows) return; int n; #pragma unroll for (int k = 0; k < 16; ++k) { n = 0; if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1) { n += smem[threadIdx.y ][threadIdx.x ] == 2; n += smem[threadIdx.y ][threadIdx.x + 1] == 2; n += smem[threadIdx.y ][threadIdx.x + 2] == 2; n += smem[threadIdx.y + 1][threadIdx.x ] == 2; n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2; n += smem[threadIdx.y + 2][threadIdx.x ] == 2; n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2; n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2; } __syncthreads(); if (n > 0) smem[threadIdx.y + 1][threadIdx.x + 1] = 2; __syncthreads(); } const int e = smem[threadIdx.y + 1][threadIdx.x + 1]; map(y, x) = e; n = 0; if (e == 2) { n += smem[threadIdx.y ][threadIdx.x ] == 1; n += smem[threadIdx.y ][threadIdx.x + 1] == 1; n += smem[threadIdx.y ][threadIdx.x + 2] == 1; n += smem[threadIdx.y + 1][threadIdx.x ] == 1; n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1; n += smem[threadIdx.y + 2][threadIdx.x ] == 1; n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1; n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1; } if (n > 0) { const int ind = ::atomicAdd(&counter, 1); st[ind] = make_short2(x, y); } } void edgesHysteresisLocal(PtrStepSzi map, short2* st1) { void* counter_ptr; cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, counter) ); cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) ); const dim3 block(16, 16); const dim3 grid(divUp(map.cols, block.x), divUp(map.rows, block.y)); edgesHysteresisLocalKernel<<<grid, block>>>(map, st1); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } } ////////////////////////////////////////////////////////////////////////////////////////// namespace canny { __constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1}; __constant__ int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1}; __global__ void edgesHysteresisGlobalKernel(PtrStepSzi map, short2* st1, short2* st2, const int count) { const int stack_size = 512; __shared__ int s_counter; __shared__ int s_ind; __shared__ short2 s_st[stack_size]; if (threadIdx.x == 0) s_counter = 0; __syncthreads(); int ind = blockIdx.y * gridDim.x + blockIdx.x; if (ind >= count) return; short2 pos = st1[ind]; if (threadIdx.x < 8) { pos.x += c_dx[threadIdx.x]; pos.y += c_dy[threadIdx.x]; if (pos.x > 0 && pos.x < map.cols - 1 && pos.y > 0 && pos.y < map.rows - 1 && map(pos.y, pos.x) == 1) { map(pos.y, pos.x) = 2; ind = Emulation::smem::atomicAdd(&s_counter, 1); s_st[ind] = pos; } } __syncthreads(); while (s_counter > 0 && s_counter <= stack_size - blockDim.x) { const int subTaskIdx = threadIdx.x >> 3; const int portion = ::min(s_counter, blockDim.x >> 3); if (subTaskIdx < portion) pos = s_st[s_counter - 1 - subTaskIdx]; __syncthreads(); if (threadIdx.x == 0) s_counter -= portion; __syncthreads(); if (subTaskIdx < portion) { pos.x += c_dx[threadIdx.x & 7]; pos.y += c_dy[threadIdx.x & 7]; if (pos.x > 0 && pos.x < map.cols - 1 && pos.y > 0 && pos.y < map.rows - 1 && map(pos.y, pos.x) == 1) { map(pos.y, pos.x) = 2; ind = Emulation::smem::atomicAdd(&s_counter, 1); s_st[ind] = pos; } } __syncthreads(); } if (s_counter > 0) { if (threadIdx.x == 0) { s_ind = ::atomicAdd(&counter, s_counter); if (s_ind + s_counter > map.cols * map.rows) s_counter = 0; } __syncthreads(); ind = s_ind; for (int i = threadIdx.x; i < s_counter; i += blockDim.x) st2[ind + i] = s_st[i]; } } void edgesHysteresisGlobal(PtrStepSzi map, short2* st1, short2* st2) { void* counter_ptr; cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, canny::counter) ); int count; cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) ); while (count > 0) { cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(int)) ); const dim3 block(128); const dim3 grid(::min(count, 65535u), divUp(count, 65535), 1); edgesHysteresisGlobalKernel<<<grid, block>>>(map, st1, st2, count); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(int), cudaMemcpyDeviceToHost) ); count = min(count, map.cols * map.rows); //std::swap(st1, st2); short2* tmp = st1; st1 = st2; st2 = tmp; } } } ////////////////////////////////////////////////////////////////////////////////////////// namespace canny { struct GetEdges : unary_function<int, uchar> { __device__ __forceinline__ uchar operator ()(int e) const { return (uchar)(-(e >> 1)); } __host__ __device__ __forceinline__ GetEdges() {} __host__ __device__ __forceinline__ GetEdges(const GetEdges&) {} }; } namespace cv { namespace gpu { namespace device { template <> struct TransformFunctorTraits<canny::GetEdges> : DefaultTransformFunctorTraits<canny::GetEdges> { enum { smart_shift = 4 }; }; }}} namespace canny { void getEdges(PtrStepSzi map, PtrStepSzb dst) { transform(map, dst, GetEdges(), WithOutMask(), 0); } } #endif /* CUDA_DISABLER */