/* Sample of using OpenCV dnn module with Torch ENet model. */ #include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace cv::dnn; #include <fstream> #include <iostream> #include <cstdlib> #include <sstream> using namespace std; const String keys = "{help h || Sample app for loading ENet Torch model. " "The model and class names list can be downloaded here: " "https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }" "{model m || path to Torch .net model file (model_best.net) }" "{image i || path to image file }" "{c_names c || path to file with classnames for channels (optional, categories.txt) }" "{result r || path to save output blob (optional, binary format, NCHW order) }" "{show s || whether to show all output channels or not}" "{o_blob || output blob's name. If empty, last blob's name in net is used}" ; static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vector<String> &classNames, vector<Vec3b> &colors); static vector<Vec3b> readColors(const String &filename, vector<String>& classNames); int main(int argc, char **argv) { CommandLineParser parser(argc, argv, keys); if (parser.has("help")) { parser.printMessage(); return 0; } String modelFile = parser.get<String>("model"); String imageFile = parser.get<String>("image"); if (!parser.check()) { parser.printErrors(); return 0; } String classNamesFile = parser.get<String>("c_names"); String resultFile = parser.get<String>("result"); //! [Read model and initialize network] dnn::Net net = dnn::readNetFromTorch(modelFile); //! [Prepare blob] Mat img = imread(imageFile), input; if (img.empty()) { std::cerr << "Can't read image from the file: " << imageFile << std::endl; exit(-1); } Size origSize = img.size(); Size inputImgSize = cv::Size(1024, 512); if (inputImgSize != origSize) resize(img, img, inputImgSize); //Resize image to input size Mat inputBlob = blobFromImage(img, 1./255); //Convert Mat to image batch //! [Prepare blob] //! [Set input blob] net.setInput(inputBlob, ""); //set the network input //! [Set input blob] TickMeter tm; String oBlob = net.getLayerNames().back(); if (!parser.get<String>("o_blob").empty()) { oBlob = parser.get<String>("o_blob"); } //! [Make forward pass] tm.start(); Mat result = net.forward(oBlob); tm.stop(); if (!resultFile.empty()) { CV_Assert(result.isContinuous()); ofstream fout(resultFile.c_str(), ios::out | ios::binary); fout.write((char*)result.data, result.total() * sizeof(float)); fout.close(); } std::cout << "Output blob: " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << "\n"; std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl; if (parser.has("show")) { std::vector<String> classNames; vector<cv::Vec3b> colors; if(!classNamesFile.empty()) { colors = readColors(classNamesFile, classNames); } Mat segm, legend; colorizeSegmentation(result, segm, legend, classNames, colors); Mat show; addWeighted(img, 0.1, segm, 0.9, 0.0, show); cv::resize(show, show, origSize, 0, 0, cv::INTER_NEAREST); imshow("Result", show); if(classNames.size()) imshow("Legend", legend); waitKey(); } return 0; } //main static void colorizeSegmentation(const Mat &score, Mat &segm, Mat &legend, vector<String> &classNames, vector<Vec3b> &colors) { const int rows = score.size[2]; const int cols = score.size[3]; const int chns = score.size[1]; cv::Mat maxCl(rows, cols, CV_8UC1); cv::Mat maxVal(rows, cols, CV_32FC1); for (int ch = 0; ch < chns; ch++) { for (int row = 0; row < rows; row++) { const float *ptrScore = score.ptr<float>(0, ch, row); uchar *ptrMaxCl = maxCl.ptr<uchar>(row); float *ptrMaxVal = maxVal.ptr<float>(row); for (int col = 0; col < cols; col++) { if (ptrScore[col] > ptrMaxVal[col]) { ptrMaxVal[col] = ptrScore[col]; ptrMaxCl[col] = (uchar)ch; } } } } segm.create(rows, cols, CV_8UC3); for (int row = 0; row < rows; row++) { const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row); for (int col = 0; col < cols; col++) { ptrSegm[col] = colors[ptrMaxCl[col]]; } } if (classNames.size() == colors.size()) { int blockHeight = 30; legend.create(blockHeight*(int)classNames.size(), 200, CV_8UC3); for(int i = 0; i < (int)classNames.size(); i++) { cv::Mat block = legend.rowRange(i*blockHeight, (i+1)*blockHeight); block = colors[i]; putText(block, classNames[i], Point(0, blockHeight/2), FONT_HERSHEY_SIMPLEX, 0.5, Scalar()); } } } static vector<Vec3b> readColors(const String &filename, vector<String>& classNames) { vector<cv::Vec3b> colors; classNames.clear(); ifstream fp(filename.c_str()); if (!fp.is_open()) { cerr << "File with colors not found: " << filename << endl; exit(-1); } string line; while (!fp.eof()) { getline(fp, line); if (line.length()) { stringstream ss(line); string name; ss >> name; int temp; cv::Vec3b color; ss >> temp; color[0] = (uchar)temp; ss >> temp; color[1] = (uchar)temp; ss >> temp; color[2] = (uchar)temp; classNames.push_back(name); colors.push_back(color); } } fp.close(); return colors; }