#include "perf_precomp.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/opencv_modules.hpp" using namespace std; using namespace cv; using namespace perf; using std::tr1::tuple; using std::tr1::get; typedef TestBaseWithParam<tuple<string, string> > bundleAdjuster; #ifdef HAVE_OPENCV_XFEATURES2D #define TEST_DETECTORS testing::Values("surf", "orb") #else #define TEST_DETECTORS testing::Values<string>("orb") #endif #define WORK_MEGAPIX 0.6 #define AFFINE_FUNCTIONS testing::Values("affinePartial", "affine") PERF_TEST_P(bundleAdjuster, affine, testing::Combine(TEST_DETECTORS, AFFINE_FUNCTIONS)) { Mat img1, img1_full = imread(getDataPath("stitching/s1.jpg")); Mat img2, img2_full = imread(getDataPath("stitching/s2.jpg")); float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); resize(img1_full, img1, Size(), scale1, scale1); resize(img2_full, img2, Size(), scale2, scale2); string detector = get<0>(GetParam()); string affine_fun = get<1>(GetParam()); Ptr<detail::FeaturesFinder> finder; Ptr<detail::FeaturesMatcher> matcher; Ptr<detail::BundleAdjusterBase> bundle_adjuster; if (detector == "surf") finder = makePtr<detail::SurfFeaturesFinder>(); else if (detector == "orb") finder = makePtr<detail::OrbFeaturesFinder>(); if (affine_fun == "affinePartial") { matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false); bundle_adjuster = makePtr<detail::BundleAdjusterAffinePartial>(); } else if (affine_fun == "affine") { matcher = makePtr<detail::AffineBestOf2NearestMatcher>(true); bundle_adjuster = makePtr<detail::BundleAdjusterAffine>(); } Ptr<detail::Estimator> estimator = makePtr<detail::AffineBasedEstimator>(); std::vector<Mat> images; images.push_back(img1), images.push_back(img2); std::vector<detail::ImageFeatures> features; std::vector<detail::MatchesInfo> pairwise_matches; std::vector<detail::CameraParams> cameras; std::vector<detail::CameraParams> cameras2; (*finder)(images, features); (*matcher)(features, pairwise_matches); if (!(*estimator)(features, pairwise_matches, cameras)) FAIL() << "estimation failed. this should never happen."; // this is currently required for (size_t i = 0; i < cameras.size(); ++i) { Mat R; cameras[i].R.convertTo(R, CV_32F); cameras[i].R = R; } cameras2 = cameras; bool success = true; while(next()) { cameras = cameras2; // revert cameras back to original initial guess startTimer(); success = (*bundle_adjuster)(features, pairwise_matches, cameras); stopTimer(); } EXPECT_TRUE(success); EXPECT_TRUE(cameras.size() == 2); // fist camera should be just identity Mat &first = cameras[0].R; SANITY_CHECK(first, 1e-3, ERROR_ABSOLUTE); // second camera should be the estimated transform between images // separate rotation and translation in transform matrix Mat T_second (cameras[1].R, Range(0, 2), Range(2, 3)); Mat R_second (cameras[1].R, Range(0, 2), Range(0, 2)); Mat h (cameras[1].R, Range(2, 3), Range::all()); SANITY_CHECK(T_second, 5, ERROR_ABSOLUTE); // allow 5 pixels diff in translations SANITY_CHECK(R_second, .01, ERROR_ABSOLUTE); // rotations must be more precise // last row should be precisely (0, 0, 1) as it is just added for representation in homogeneous // coordinates EXPECT_TRUE(h.type() == CV_32F); EXPECT_FLOAT_EQ(h.at<float>(0), 0.f); EXPECT_FLOAT_EQ(h.at<float>(1), 0.f); EXPECT_FLOAT_EQ(h.at<float>(2), 1.f); }