/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include "opencv2/gpu/device/common.hpp" #include "opencv2/gpu/device/limits.hpp" #include "opencv2/gpu/device/functional.hpp" #include "opencv2/gpu/device/reduce.hpp" using namespace cv::gpu; using namespace cv::gpu::device; namespace optflowbm { texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_prev(false, cudaFilterModePoint, cudaAddressModeClamp); texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_curr(false, cudaFilterModePoint, cudaAddressModeClamp); __device__ int cmpBlocks(int X1, int Y1, int X2, int Y2, int2 blockSize) { int s = 0; for (int y = 0; y < blockSize.y; ++y) { for (int x = 0; x < blockSize.x; ++x) s += ::abs(tex2D(tex_prev, X1 + x, Y1 + y) - tex2D(tex_curr, X2 + x, Y2 + y)); } return s; } __global__ void calcOptFlowBM(PtrStepSzf velx, PtrStepf vely, const int2 blockSize, const int2 shiftSize, const bool usePrevious, const int maxX, const int maxY, const int acceptLevel, const int escapeLevel, const short2* ss, const int ssCount) { const int j = blockIdx.x * blockDim.x + threadIdx.x; const int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= velx.rows || j >= velx.cols) return; const int X1 = j * shiftSize.x; const int Y1 = i * shiftSize.y; const int offX = usePrevious ? __float2int_rn(velx(i, j)) : 0; const int offY = usePrevious ? __float2int_rn(vely(i, j)) : 0; int X2 = X1 + offX; int Y2 = Y1 + offY; int dist = numeric_limits<int>::max(); if (0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY) dist = cmpBlocks(X1, Y1, X2, Y2, blockSize); int countMin = 1; int sumx = offX; int sumy = offY; if (dist > acceptLevel) { // do brute-force search for (int k = 0; k < ssCount; ++k) { const short2 ssVal = ss[k]; const int dx = offX + ssVal.x; const int dy = offY + ssVal.y; X2 = X1 + dx; Y2 = Y1 + dy; if (0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY) { const int tmpDist = cmpBlocks(X1, Y1, X2, Y2, blockSize); if (tmpDist < acceptLevel) { sumx = dx; sumy = dy; countMin = 1; break; } if (tmpDist < dist) { dist = tmpDist; sumx = dx; sumy = dy; countMin = 1; } else if (tmpDist == dist) { sumx += dx; sumy += dy; countMin++; } } } if (dist > escapeLevel) { sumx = offX; sumy = offY; countMin = 1; } } velx(i, j) = static_cast<float>(sumx) / countMin; vely(i, j) = static_cast<float>(sumy) / countMin; } void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious, int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream) { bindTexture(&tex_prev, prev); bindTexture(&tex_curr, curr); const dim3 block(32, 8); const dim3 grid(divUp(velx.cols, block.x), divUp(vely.rows, block.y)); calcOptFlowBM<<<grid, block, 0, stream>>>(velx, vely, blockSize, shiftSize, usePrevious, maxX, maxY, acceptLevel, escapeLevel, ss, ssCount); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } } ///////////////////////////////////////////////////////// // Fast approximate version namespace optflowbm_fast { enum { CTA_SIZE = 128, TILE_COLS = 128, TILE_ROWS = 32, STRIDE = CTA_SIZE }; template <typename T> __device__ __forceinline__ int calcDist(T a, T b) { return ::abs(a - b); } template <class T> struct FastOptFlowBM { int search_radius; int block_radius; int search_window; int block_window; PtrStepSz<T> I0; PtrStep<T> I1; mutable PtrStepi buffer; FastOptFlowBM(int search_window_, int block_window_, PtrStepSz<T> I0_, PtrStepSz<T> I1_, PtrStepi buffer_) : search_radius(search_window_ / 2), block_radius(block_window_ / 2), search_window(search_window_), block_window(block_window_), I0(I0_), I1(I1_), buffer(buffer_) { } __device__ __forceinline__ void initSums_BruteForce(int i, int j, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const { for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { dist_sums[index] = 0; for (int tx = 0; tx < block_window; ++tx) col_sums(tx, index) = 0; int y = index / search_window; int x = index - y * search_window; int ay = i; int ax = j; int by = i + y - search_radius; int bx = j + x - search_radius; for (int tx = -block_radius; tx <= block_radius; ++tx) { int col_sum = 0; for (int ty = -block_radius; ty <= block_radius; ++ty) { int dist = calcDist(I0(ay + ty, ax + tx), I1(by + ty, bx + tx)); dist_sums[index] += dist; col_sum += dist; } col_sums(tx + block_radius, index) = col_sum; } up_col_sums(j, index) = col_sums(block_window - 1, index); } } __device__ __forceinline__ void shiftRight_FirstRow(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const { for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { int y = index / search_window; int x = index - y * search_window; int ay = i; int ax = j + block_radius; int by = i + y - search_radius; int bx = j + x - search_radius + block_radius; int col_sum = 0; for (int ty = -block_radius; ty <= block_radius; ++ty) col_sum += calcDist(I0(ay + ty, ax), I1(by + ty, bx)); dist_sums[index] += col_sum - col_sums(first, index); col_sums(first, index) = col_sum; up_col_sums(j, index) = col_sum; } } __device__ __forceinline__ void shiftRight_UpSums(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const { int ay = i; int ax = j + block_radius; T a_up = I0(ay - block_radius - 1, ax); T a_down = I0(ay + block_radius, ax); for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { int y = index / search_window; int x = index - y * search_window; int by = i + y - search_radius; int bx = j + x - search_radius + block_radius; T b_up = I1(by - block_radius - 1, bx); T b_down = I1(by + block_radius, bx); int col_sum = up_col_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up); dist_sums[index] += col_sum - col_sums(first, index); col_sums(first, index) = col_sum; up_col_sums(j, index) = col_sum; } } __device__ __forceinline__ void convolve_window(int i, int j, const int* dist_sums, float& velx, float& vely) const { int bestDist = numeric_limits<int>::max(); int bestInd = -1; for (int index = threadIdx.x; index < search_window * search_window; index += STRIDE) { int curDist = dist_sums[index]; if (curDist < bestDist) { bestDist = curDist; bestInd = index; } } __shared__ int cta_dist_buffer[CTA_SIZE]; __shared__ int cta_ind_buffer[CTA_SIZE]; reduceKeyVal<CTA_SIZE>(cta_dist_buffer, bestDist, cta_ind_buffer, bestInd, threadIdx.x, less<int>()); if (threadIdx.x == 0) { int y = bestInd / search_window; int x = bestInd - y * search_window; velx = x - search_radius; vely = y - search_radius; } } __device__ __forceinline__ void operator()(PtrStepf velx, PtrStepf vely) const { int tbx = blockIdx.x * TILE_COLS; int tby = blockIdx.y * TILE_ROWS; int tex = ::min(tbx + TILE_COLS, I0.cols); int tey = ::min(tby + TILE_ROWS, I0.rows); PtrStepi col_sums; col_sums.data = buffer.ptr(I0.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window; col_sums.step = buffer.step; PtrStepi up_col_sums; up_col_sums.data = buffer.data + blockIdx.y * search_window * search_window; up_col_sums.step = buffer.step; extern __shared__ int dist_sums[]; //search_window * search_window int first = 0; for (int i = tby; i < tey; ++i) { for (int j = tbx; j < tex; ++j) { __syncthreads(); if (j == tbx) { initSums_BruteForce(i, j, dist_sums, col_sums, up_col_sums); first = 0; } else { if (i == tby) shiftRight_FirstRow(i, j, first, dist_sums, col_sums, up_col_sums); else shiftRight_UpSums(i, j, first, dist_sums, col_sums, up_col_sums); first = (first + 1) % block_window; } __syncthreads(); convolve_window(i, j, dist_sums, velx(i, j), vely(i, j)); } } } }; template<typename T> __global__ void optflowbm_fast_kernel(const FastOptFlowBM<T> fbm, PtrStepf velx, PtrStepf vely) { fbm(velx, vely); } void get_buffer_size(int src_cols, int src_rows, int search_window, int block_window, int& buffer_cols, int& buffer_rows) { dim3 grid(divUp(src_cols, TILE_COLS), divUp(src_rows, TILE_ROWS)); buffer_cols = search_window * search_window * grid.y; buffer_rows = src_cols + block_window * grid.x; } template <typename T> void calc(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream) { FastOptFlowBM<T> fbm(search_window, block_window, I0, I1, buffer); dim3 block(CTA_SIZE, 1); dim3 grid(divUp(I0.cols, TILE_COLS), divUp(I0.rows, TILE_ROWS)); size_t smem = search_window * search_window * sizeof(int); optflowbm_fast_kernel<<<grid, block, smem, stream>>>(fbm, velx, vely); cudaSafeCall ( cudaGetLastError () ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void calc<uchar>(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream); } #endif // !defined CUDA_DISABLER