/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_GPU_DEVICE_BLOCK_HPP__ #define __OPENCV_GPU_DEVICE_BLOCK_HPP__ namespace cv { namespace gpu { namespace device { struct Block { static __device__ __forceinline__ unsigned int id() { return blockIdx.x; } static __device__ __forceinline__ unsigned int stride() { return blockDim.x * blockDim.y * blockDim.z; } static __device__ __forceinline__ void sync() { __syncthreads(); } static __device__ __forceinline__ int flattenedThreadId() { return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x; } template<typename It, typename T> static __device__ __forceinline__ void fill(It beg, It end, const T& value) { int STRIDE = stride(); It t = beg + flattenedThreadId(); for(; t < end; t += STRIDE) *t = value; } template<typename OutIt, typename T> static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value) { int STRIDE = stride(); int tid = flattenedThreadId(); value += tid; for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE) *t = value; } template<typename InIt, typename OutIt> static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out) { int STRIDE = stride(); InIt t = beg + flattenedThreadId(); OutIt o = out + (t - beg); for(; t < end; t += STRIDE, o += STRIDE) *o = *t; } template<typename InIt, typename OutIt, class UnOp> static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op) { int STRIDE = stride(); InIt t = beg + flattenedThreadId(); OutIt o = out + (t - beg); for(; t < end; t += STRIDE, o += STRIDE) *o = op(*t); } template<typename InIt1, typename InIt2, typename OutIt, class BinOp> static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op) { int STRIDE = stride(); InIt1 t1 = beg1 + flattenedThreadId(); InIt2 t2 = beg2 + flattenedThreadId(); OutIt o = out + (t1 - beg1); for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE) *o = op(*t1, *t2); } template<int CTA_SIZE, typename T, class BinOp> static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op) { int tid = flattenedThreadId(); T val = buffer[tid]; if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); } if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); } if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); } if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); } if (tid < 32) { if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); } if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); } if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); } if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); } if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); } if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); } } } template<int CTA_SIZE, typename T, class BinOp> static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op) { int tid = flattenedThreadId(); T val = buffer[tid] = init; __syncthreads(); if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); } if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); } if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); } if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); } if (tid < 32) { if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); } if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); } if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); } if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); } if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); } if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); } } __syncthreads(); return buffer[0]; } template <typename T, class BinOp> static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op) { int ftid = flattenedThreadId(); int sft = stride(); if (sft < n) { for (unsigned int i = sft + ftid; i < n; i += sft) data[ftid] = op(data[ftid], data[i]); __syncthreads(); n = sft; } while (n > 1) { unsigned int half = n/2; if (ftid < half) data[ftid] = op(data[ftid], data[n - ftid - 1]); __syncthreads(); n = n - half; } } }; }}} #endif /* __OPENCV_GPU_DEVICE_BLOCK_HPP__ */