#pragma once #include "opencv2/core/ocl.hpp" namespace cv { void clipObjects(Size sz, std::vector<Rect>& objects, std::vector<int>* a, std::vector<double>* b); class FeatureEvaluator { public: enum { HAAR = 0, LBP = 1, HOG = 2 }; struct ScaleData { ScaleData() { scale = 0.f; layer_ofs = ystep = 0; } Size getWorkingSize(Size winSize) const { return Size(std::max(szi.width - winSize.width, 0), std::max(szi.height - winSize.height, 0)); } float scale; Size szi; int layer_ofs, ystep; }; virtual ~FeatureEvaluator(); virtual bool read(const FileNode& node, Size origWinSize); virtual Ptr<FeatureEvaluator> clone() const; virtual int getFeatureType() const; int getNumChannels() const { return nchannels; } virtual bool setImage(InputArray img, const std::vector<float>& scales); virtual bool setWindow(Point p, int scaleIdx); const ScaleData& getScaleData(int scaleIdx) const { CV_Assert( 0 <= scaleIdx && scaleIdx < (int)scaleData->size()); return scaleData->at(scaleIdx); } virtual void getUMats(std::vector<UMat>& bufs); virtual void getMats(); Size getLocalSize() const { return localSize; } Size getLocalBufSize() const { return lbufSize; } virtual float calcOrd(int featureIdx) const; virtual int calcCat(int featureIdx) const; static Ptr<FeatureEvaluator> create(int type); protected: enum { SBUF_VALID=1, USBUF_VALID=2 }; int sbufFlag; bool updateScaleData( Size imgsz, const std::vector<float>& _scales ); virtual void computeChannels( int, InputArray ) {} virtual void computeOptFeatures() {} Size origWinSize, sbufSize, localSize, lbufSize; int nchannels; Mat sbuf, rbuf; UMat urbuf, usbuf, ufbuf, uscaleData; Ptr<std::vector<ScaleData> > scaleData; }; class CascadeClassifierImpl : public BaseCascadeClassifier { public: CascadeClassifierImpl(); virtual ~CascadeClassifierImpl(); bool empty() const; bool load( const String& filename ); void read( const FileNode& node ); bool read_( const FileNode& node ); void detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size() ); void detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects, CV_OUT std::vector<int>& numDetections, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size() ); void detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects, CV_OUT std::vector<int>& rejectLevels, CV_OUT std::vector<double>& levelWeights, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size(), bool outputRejectLevels = false ); bool isOldFormatCascade() const; Size getOriginalWindowSize() const; int getFeatureType() const; void* getOldCascade(); void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator); Ptr<MaskGenerator> getMaskGenerator(); protected: enum { SUM_ALIGN = 64 }; bool detectSingleScale( InputArray image, Size processingRectSize, int yStep, double factor, std::vector<Rect>& candidates, std::vector<int>& rejectLevels, std::vector<double>& levelWeights, Size sumSize0, bool outputRejectLevels = false ); #ifdef HAVE_OPENCL bool ocl_detectMultiScaleNoGrouping( const std::vector<float>& scales, std::vector<Rect>& candidates ); #endif void detectMultiScaleNoGrouping( InputArray image, std::vector<Rect>& candidates, std::vector<int>& rejectLevels, std::vector<double>& levelWeights, double scaleFactor, Size minObjectSize, Size maxObjectSize, bool outputRejectLevels = false ); enum { MAX_FACES = 10000 }; enum { BOOST = 0 }; enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING, SCALE_IMAGE = CASCADE_SCALE_IMAGE, FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT, DO_ROUGH_SEARCH = CASCADE_DO_ROUGH_SEARCH }; friend class CascadeClassifierInvoker; friend class SparseCascadeClassifierInvoker; template<class FEval> friend int predictOrdered( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); template<class FEval> friend int predictCategorical( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); template<class FEval> friend int predictOrderedStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); template<class FEval> friend int predictCategoricalStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight); int runAt( Ptr<FeatureEvaluator>& feval, Point pt, int scaleIdx, double& weight ); class Data { public: struct DTreeNode { int featureIdx; float threshold; // for ordered features only int left; int right; }; struct DTree { int nodeCount; }; struct Stage { int first; int ntrees; float threshold; }; struct Stump { Stump() { } Stump(int _featureIdx, float _threshold, float _left, float _right) : featureIdx(_featureIdx), threshold(_threshold), left(_left), right(_right) {} int featureIdx; float threshold; float left; float right; }; Data(); bool read(const FileNode &node); int stageType; int featureType; int ncategories; int minNodesPerTree, maxNodesPerTree; Size origWinSize; std::vector<Stage> stages; std::vector<DTree> classifiers; std::vector<DTreeNode> nodes; std::vector<float> leaves; std::vector<int> subsets; std::vector<Stump> stumps; }; Data data; Ptr<FeatureEvaluator> featureEvaluator; Ptr<CvHaarClassifierCascade> oldCascade; Ptr<MaskGenerator> maskGenerator; UMat ugrayImage; UMat ufacepos, ustages, unodes, uleaves, usubsets; #ifdef HAVE_OPENCL ocl::Kernel haarKernel, lbpKernel; bool tryOpenCL; #endif Mutex mtx; }; #define CC_CASCADE_PARAMS "cascadeParams" #define CC_STAGE_TYPE "stageType" #define CC_FEATURE_TYPE "featureType" #define CC_HEIGHT "height" #define CC_WIDTH "width" #define CC_STAGE_NUM "stageNum" #define CC_STAGES "stages" #define CC_STAGE_PARAMS "stageParams" #define CC_BOOST "BOOST" #define CC_MAX_DEPTH "maxDepth" #define CC_WEAK_COUNT "maxWeakCount" #define CC_STAGE_THRESHOLD "stageThreshold" #define CC_WEAK_CLASSIFIERS "weakClassifiers" #define CC_INTERNAL_NODES "internalNodes" #define CC_LEAF_VALUES "leafValues" #define CC_FEATURES "features" #define CC_FEATURE_PARAMS "featureParams" #define CC_MAX_CAT_COUNT "maxCatCount" #define CC_HAAR "HAAR" #define CC_RECTS "rects" #define CC_TILTED "tilted" #define CC_LBP "LBP" #define CC_RECT "rect" #define CC_HOG "HOG" #define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \ /* (x, y) */ \ (p0) = sum + (rect).x + (step) * (rect).y, \ /* (x + w, y) */ \ (p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \ /* (x + w, y) */ \ (p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \ /* (x + w, y + h) */ \ (p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height) #define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \ /* (x, y) */ \ (p0) = tilted + (rect).x + (step) * (rect).y, \ /* (x - h, y + h) */ \ (p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \ /* (x + w, y + w) */ \ (p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \ /* (x + w - h, y + w + h) */ \ (p3) = tilted + (rect).x + (rect).width - (rect).height \ + (step) * ((rect).y + (rect).width + (rect).height) #define CALC_SUM_(p0, p1, p2, p3, offset) \ ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset]) #define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset) #define CV_SUM_OFS( p0, p1, p2, p3, sum, rect, step ) \ /* (x, y) */ \ (p0) = sum + (rect).x + (step) * (rect).y, \ /* (x + w, y) */ \ (p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \ /* (x + w, y) */ \ (p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \ /* (x + w, y + h) */ \ (p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height) #define CV_TILTED_OFS( p0, p1, p2, p3, tilted, rect, step ) \ /* (x, y) */ \ (p0) = tilted + (rect).x + (step) * (rect).y, \ /* (x - h, y + h) */ \ (p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \ /* (x + w, y + w) */ \ (p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \ /* (x + w - h, y + w + h) */ \ (p3) = tilted + (rect).x + (rect).width - (rect).height \ + (step) * ((rect).y + (rect).width + (rect).height) #define CALC_SUM_(p0, p1, p2, p3, offset) \ ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset]) #define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset) #define CALC_SUM_OFS_(p0, p1, p2, p3, ptr) \ ((ptr)[p0] - (ptr)[p1] - (ptr)[p2] + (ptr)[p3]) #define CALC_SUM_OFS(rect, ptr) CALC_SUM_OFS_((rect)[0], (rect)[1], (rect)[2], (rect)[3], ptr) //---------------------------------------------- HaarEvaluator --------------------------------------- class HaarEvaluator : public FeatureEvaluator { public: struct Feature { Feature(); bool read( const FileNode& node ); bool tilted; enum { RECT_NUM = 3 }; struct { Rect r; float weight; } rect[RECT_NUM]; }; struct OptFeature { OptFeature(); enum { RECT_NUM = Feature::RECT_NUM }; float calc( const int* pwin ) const; void setOffsets( const Feature& _f, int step, int tofs ); int ofs[RECT_NUM][4]; float weight[4]; }; HaarEvaluator(); virtual ~HaarEvaluator(); virtual bool read( const FileNode& node, Size origWinSize); virtual Ptr<FeatureEvaluator> clone() const; virtual int getFeatureType() const { return FeatureEvaluator::HAAR; } virtual bool setWindow(Point p, int scaleIdx); Rect getNormRect() const; int getSquaresOffset() const; float operator()(int featureIdx) const { return optfeaturesPtr[featureIdx].calc(pwin) * varianceNormFactor; } virtual float calcOrd(int featureIdx) const { return (*this)(featureIdx); } protected: virtual void computeChannels( int i, InputArray img ); virtual void computeOptFeatures(); Ptr<std::vector<Feature> > features; Ptr<std::vector<OptFeature> > optfeatures; Ptr<std::vector<OptFeature> > optfeatures_lbuf; bool hasTiltedFeatures; int tofs, sqofs; Vec4i nofs; Rect normrect; const int* pwin; OptFeature* optfeaturesPtr; // optimization float varianceNormFactor; }; inline HaarEvaluator::Feature :: Feature() { tilted = false; rect[0].r = rect[1].r = rect[2].r = Rect(); rect[0].weight = rect[1].weight = rect[2].weight = 0; } inline HaarEvaluator::OptFeature :: OptFeature() { weight[0] = weight[1] = weight[2] = 0.f; ofs[0][0] = ofs[0][1] = ofs[0][2] = ofs[0][3] = ofs[1][0] = ofs[1][1] = ofs[1][2] = ofs[1][3] = ofs[2][0] = ofs[2][1] = ofs[2][2] = ofs[2][3] = 0; } inline float HaarEvaluator::OptFeature :: calc( const int* ptr ) const { float ret = weight[0] * CALC_SUM_OFS(ofs[0], ptr) + weight[1] * CALC_SUM_OFS(ofs[1], ptr); if( weight[2] != 0.0f ) ret += weight[2] * CALC_SUM_OFS(ofs[2], ptr); return ret; } //---------------------------------------------- LBPEvaluator ------------------------------------- class LBPEvaluator : public FeatureEvaluator { public: struct Feature { Feature(); Feature( int x, int y, int _block_w, int _block_h ) : rect(x, y, _block_w, _block_h) {} bool read(const FileNode& node ); Rect rect; // weight and height for block }; struct OptFeature { OptFeature(); int calc( const int* pwin ) const; void setOffsets( const Feature& _f, int step ); int ofs[16]; }; LBPEvaluator(); virtual ~LBPEvaluator(); virtual bool read( const FileNode& node, Size origWinSize ); virtual Ptr<FeatureEvaluator> clone() const; virtual int getFeatureType() const { return FeatureEvaluator::LBP; } virtual bool setWindow(Point p, int scaleIdx); int operator()(int featureIdx) const { return optfeaturesPtr[featureIdx].calc(pwin); } virtual int calcCat(int featureIdx) const { return (*this)(featureIdx); } protected: virtual void computeChannels( int i, InputArray img ); virtual void computeOptFeatures(); Ptr<std::vector<Feature> > features; Ptr<std::vector<OptFeature> > optfeatures; Ptr<std::vector<OptFeature> > optfeatures_lbuf; OptFeature* optfeaturesPtr; // optimization const int* pwin; }; inline LBPEvaluator::Feature :: Feature() { rect = Rect(); } inline LBPEvaluator::OptFeature :: OptFeature() { for( int i = 0; i < 16; i++ ) ofs[i] = 0; } inline int LBPEvaluator::OptFeature :: calc( const int* p ) const { int cval = CALC_SUM_OFS_( ofs[5], ofs[6], ofs[9], ofs[10], p ); return (CALC_SUM_OFS_( ofs[0], ofs[1], ofs[4], ofs[5], p ) >= cval ? 128 : 0) | // 0 (CALC_SUM_OFS_( ofs[1], ofs[2], ofs[5], ofs[6], p ) >= cval ? 64 : 0) | // 1 (CALC_SUM_OFS_( ofs[2], ofs[3], ofs[6], ofs[7], p ) >= cval ? 32 : 0) | // 2 (CALC_SUM_OFS_( ofs[6], ofs[7], ofs[10], ofs[11], p ) >= cval ? 16 : 0) | // 5 (CALC_SUM_OFS_( ofs[10], ofs[11], ofs[14], ofs[15], p ) >= cval ? 8 : 0)| // 8 (CALC_SUM_OFS_( ofs[9], ofs[10], ofs[13], ofs[14], p ) >= cval ? 4 : 0)| // 7 (CALC_SUM_OFS_( ofs[8], ofs[9], ofs[12], ofs[13], p ) >= cval ? 2 : 0)| // 6 (CALC_SUM_OFS_( ofs[4], ofs[5], ofs[8], ofs[9], p ) >= cval ? 1 : 0); } //---------------------------------------------- predictor functions ------------------------------------- template<class FEval> inline int predictOrdered( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0]; for( int si = 0; si < nstages; si++ ) { CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; sum = 0; for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi]; int idx = 0, root = nodeOfs; do { CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx]; double val = featureEvaluator(node.featureIdx); idx = val < node.threshold ? node.left : node.right; } while( idx > 0 ); sum += cascadeLeaves[leafOfs - idx]; nodeOfs += weak.nodeCount; leafOfs += weak.nodeCount + 1; } if( sum < stage.threshold ) return -si; } return 1; } template<class FEval> inline int predictCategorical( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; size_t subsetSize = (cascade.data.ncategories + 31)/32; int* cascadeSubsets = &cascade.data.subsets[0]; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifierImpl::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifierImpl::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0]; for(int si = 0; si < nstages; si++ ) { CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; sum = 0; for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifierImpl::Data::DTree& weak = cascadeWeaks[stage.first + wi]; int idx = 0, root = nodeOfs; do { CascadeClassifierImpl::Data::DTreeNode& node = cascadeNodes[root + idx]; int c = featureEvaluator(node.featureIdx); const int* subset = &cascadeSubsets[(root + idx)*subsetSize]; idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right; } while( idx > 0 ); sum += cascadeLeaves[leafOfs - idx]; nodeOfs += weak.nodeCount; leafOfs += weak.nodeCount + 1; } if( sum < stage.threshold ) return -si; } return 1; } template<class FEval> inline int predictOrderedStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) { CV_Assert(!cascade.data.stumps.empty()); FEval& featureEvaluator = (FEval&)*_featureEvaluator; const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0]; const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0]; int nstages = (int)cascade.data.stages.size(); double tmp = 0; for( int stageIdx = 0; stageIdx < nstages; stageIdx++ ) { const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[stageIdx]; tmp = 0; int ntrees = stage.ntrees; for( int i = 0; i < ntrees; i++ ) { const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[i]; double value = featureEvaluator(stump.featureIdx); tmp += value < stump.threshold ? stump.left : stump.right; } if( tmp < stage.threshold ) { sum = (double)tmp; return -stageIdx; } cascadeStumps += ntrees; } sum = (double)tmp; return 1; } template<class FEval> inline int predictCategoricalStump( CascadeClassifierImpl& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) { CV_Assert(!cascade.data.stumps.empty()); int nstages = (int)cascade.data.stages.size(); FEval& featureEvaluator = (FEval&)*_featureEvaluator; size_t subsetSize = (cascade.data.ncategories + 31)/32; const int* cascadeSubsets = &cascade.data.subsets[0]; const CascadeClassifierImpl::Data::Stump* cascadeStumps = &cascade.data.stumps[0]; const CascadeClassifierImpl::Data::Stage* cascadeStages = &cascade.data.stages[0]; double tmp = 0; for( int si = 0; si < nstages; si++ ) { const CascadeClassifierImpl::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; tmp = 0; for( wi = 0; wi < ntrees; wi++ ) { const CascadeClassifierImpl::Data::Stump& stump = cascadeStumps[wi]; int c = featureEvaluator(stump.featureIdx); const int* subset = &cascadeSubsets[wi*subsetSize]; tmp += (subset[c>>5] & (1 << (c & 31))) ? stump.left : stump.right; } if( tmp < stage.threshold ) { sum = tmp; return -si; } cascadeStumps += ntrees; cascadeSubsets += ntrees*subsetSize; } sum = (double)tmp; return 1; } }