/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" #include "opencv2/ts/gpu_perf.hpp" using namespace std; using namespace testing; using namespace perf; #if defined(HAVE_XINE) || \ defined(HAVE_GSTREAMER) || \ defined(HAVE_QUICKTIME) || \ defined(HAVE_QTKIT) || \ defined(HAVE_AVFOUNDATION) || \ defined(HAVE_FFMPEG) || \ defined(WIN32) /* assume that we have ffmpeg */ # define BUILD_WITH_VIDEO_INPUT_SUPPORT 1 #else # define BUILD_WITH_VIDEO_INPUT_SUPPORT 0 #endif namespace cv { template<> void Ptr<CvBGStatModel>::delete_obj() { cvReleaseBGStatModel(&obj); } } ////////////////////////////////////////////////////// // InterpolateFrames typedef pair<string, string> pair_string; DEF_PARAM_TEST_1(ImagePair, pair_string); PERF_TEST_P(ImagePair, Video_InterpolateFrames, Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) { cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0); frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat d_fu, d_fv; cv::gpu::GpuMat d_bu, d_bv; cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); d_flow(d_frame0, d_frame1, d_fu, d_fv); d_flow(d_frame1, d_frame0, d_bu, d_bv); cv::gpu::GpuMat newFrame; cv::gpu::GpuMat d_buf; TEST_CYCLE() cv::gpu::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, newFrame, d_buf); GPU_SANITY_CHECK(newFrame, 1e-4); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////// // CreateOpticalFlowNeedleMap PERF_TEST_P(ImagePair, Video_CreateOpticalFlowNeedleMap, Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) { cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0); frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat u; cv::gpu::GpuMat v; cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); d_flow(d_frame0, d_frame1, u, v); cv::gpu::GpuMat vertex, colors; TEST_CYCLE() cv::gpu::createOpticalFlowNeedleMap(u, v, vertex, colors); GPU_SANITY_CHECK(vertex, 1e-5); GPU_SANITY_CHECK(colors); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////// // GoodFeaturesToTrack DEF_PARAM_TEST(Image_MinDistance, string, double); PERF_TEST_P(Image_MinDistance, Video_GoodFeaturesToTrack, Combine(Values<string>("gpu/perf/aloe.png"), Values(0.0, 3.0))) { const string fileName = GET_PARAM(0); const double minDistance = GET_PARAM(1); const cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); const int maxCorners = 8000; const double qualityLevel = 0.01; if (PERF_RUN_GPU()) { cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(maxCorners, qualityLevel, minDistance); const cv::gpu::GpuMat d_image(image); cv::gpu::GpuMat pts; TEST_CYCLE() d_detector(d_image, pts); GPU_SANITY_CHECK(pts); } else { cv::Mat pts; TEST_CYCLE() cv::goodFeaturesToTrack(image, pts, maxCorners, qualityLevel, minDistance); CPU_SANITY_CHECK(pts); } } ////////////////////////////////////////////////////// // BroxOpticalFlow PERF_TEST_P(ImagePair, Video_BroxOpticalFlow, Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) { declare.time(300); cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0); frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat u; cv::gpu::GpuMat v; cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, 10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); TEST_CYCLE() d_flow(d_frame0, d_frame1, u, v); GPU_SANITY_CHECK(u, 1e-1); GPU_SANITY_CHECK(v, 1e-1); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////// // PyrLKOpticalFlowSparse DEF_PARAM_TEST(ImagePair_Gray_NPts_WinSz_Levels_Iters, pair_string, bool, int, int, int, int); PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, Video_PyrLKOpticalFlowSparse, Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")), Bool(), Values(8000), Values(21), Values(1, 3), Values(1, 30))) { declare.time(20.0); const pair_string imagePair = GET_PARAM(0); const bool useGray = GET_PARAM(1); const int points = GET_PARAM(2); const int winSize = GET_PARAM(3); const int levels = GET_PARAM(4); const int iters = GET_PARAM(5); const cv::Mat frame0 = readImage(imagePair.first, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame0.empty()); const cv::Mat frame1 = readImage(imagePair.second, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame1.empty()); cv::Mat gray_frame; if (useGray) gray_frame = frame0; else cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); cv::Mat pts; cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_pts(pts.reshape(2, 1)); cv::gpu::PyrLKOpticalFlow d_pyrLK; d_pyrLK.winSize = cv::Size(winSize, winSize); d_pyrLK.maxLevel = levels - 1; d_pyrLK.iters = iters; const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat nextPts; cv::gpu::GpuMat status; TEST_CYCLE() d_pyrLK.sparse(d_frame0, d_frame1, d_pts, nextPts, status); GPU_SANITY_CHECK(nextPts); GPU_SANITY_CHECK(status); } else { cv::Mat nextPts; cv::Mat status; TEST_CYCLE() { cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(), cv::Size(winSize, winSize), levels - 1, cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01)); } CPU_SANITY_CHECK(nextPts); CPU_SANITY_CHECK(status); } } ////////////////////////////////////////////////////// // PyrLKOpticalFlowDense DEF_PARAM_TEST(ImagePair_WinSz_Levels_Iters, pair_string, int, int, int); // Sanity test fails on Maxwell and CUDA 7.0 PERF_TEST_P(ImagePair_WinSz_Levels_Iters, DISABLED_Video_PyrLKOpticalFlowDense, Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")), Values(3, 5, 7, 9, 13, 17, 21), Values(1, 3), Values(1, 10))) { declare.time(30); const pair_string imagePair = GET_PARAM(0); const int winSize = GET_PARAM(1); const int levels = GET_PARAM(2); const int iters = GET_PARAM(3); const cv::Mat frame0 = readImage(imagePair.first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); const cv::Mat frame1 = readImage(imagePair.second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat u; cv::gpu::GpuMat v; cv::gpu::PyrLKOpticalFlow d_pyrLK; d_pyrLK.winSize = cv::Size(winSize, winSize); d_pyrLK.maxLevel = levels - 1; d_pyrLK.iters = iters; TEST_CYCLE() d_pyrLK.dense(d_frame0, d_frame1, u, v); GPU_SANITY_CHECK(u, 0.5); GPU_SANITY_CHECK(v, 0.5); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////// // FarnebackOpticalFlow PERF_TEST_P(ImagePair, Video_FarnebackOpticalFlow, Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) { declare.time(10); const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); const int numLevels = 5; const double pyrScale = 0.5; const int winSize = 13; const int numIters = 10; const int polyN = 5; const double polySigma = 1.1; const int flags = 0; if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat u; cv::gpu::GpuMat v; cv::gpu::FarnebackOpticalFlow d_farneback; d_farneback.numLevels = numLevels; d_farneback.pyrScale = pyrScale; d_farneback.winSize = winSize; d_farneback.numIters = numIters; d_farneback.polyN = polyN; d_farneback.polySigma = polySigma; d_farneback.flags = flags; TEST_CYCLE() d_farneback(d_frame0, d_frame1, u, v); GPU_SANITY_CHECK(u, 1e-4); GPU_SANITY_CHECK(v, 1e-4); } else { cv::Mat flow; TEST_CYCLE() cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); CPU_SANITY_CHECK(flow); } } ////////////////////////////////////////////////////// // OpticalFlowDual_TVL1 PERF_TEST_P(ImagePair, Video_OpticalFlowDual_TVL1, Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) { declare.time(20); const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat u; cv::gpu::GpuMat v; cv::gpu::OpticalFlowDual_TVL1_GPU d_alg; TEST_CYCLE() d_alg(d_frame0, d_frame1, u, v); GPU_SANITY_CHECK(u, 0.12); GPU_SANITY_CHECK(v, 0.12); } else { cv::Mat flow; cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1(); TEST_CYCLE() alg->calc(frame0, frame1, flow); CPU_SANITY_CHECK(flow); } } ////////////////////////////////////////////////////// // OpticalFlowBM void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr, cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious, cv::Mat& velx, cv::Mat& vely) { cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height); velx.create(sz, CV_32FC1); vely.create(sz, CV_32FC1); CvMat cvprev = prev; CvMat cvcurr = curr; CvMat cvvelx = velx; CvMat cvvely = vely; cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely); } // disabled, since it takes too much time PERF_TEST_P(ImagePair, DISABLED_Video_OpticalFlowBM, Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) { declare.time(400); const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); const cv::Size block_size(16, 16); const cv::Size shift_size(1, 1); const cv::Size max_range(16, 16); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat u, v, buf; TEST_CYCLE() cv::gpu::calcOpticalFlowBM(d_frame0, d_frame1, block_size, shift_size, max_range, false, u, v, buf); GPU_SANITY_CHECK(u); GPU_SANITY_CHECK(v); } else { cv::Mat u, v; TEST_CYCLE() calcOpticalFlowBM(frame0, frame1, block_size, shift_size, max_range, false, u, v); CPU_SANITY_CHECK(u); CPU_SANITY_CHECK(v); } } PERF_TEST_P(ImagePair, DISABLED_Video_FastOpticalFlowBM, Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png"))) { declare.time(400); const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); const cv::Size block_size(16, 16); const cv::Size shift_size(1, 1); const cv::Size max_range(16, 16); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_frame0(frame0); const cv::gpu::GpuMat d_frame1(frame1); cv::gpu::GpuMat u, v; cv::gpu::FastOpticalFlowBM fastBM; TEST_CYCLE() fastBM(d_frame0, d_frame1, u, v, max_range.width, block_size.width); GPU_SANITY_CHECK(u, 2); GPU_SANITY_CHECK(v, 2); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////// // FGDStatModel #if BUILD_WITH_VIDEO_INPUT_SUPPORT DEF_PARAM_TEST_1(Video, string); // disabled, since it takes too much time PERF_TEST_P(Video, DISABLED_Video_FGDStatModel, Values(string("gpu/video/768x576.avi"))) { const int numIters = 10; declare.time(60); const string inputFile = perf::TestBase::getDataPath(GetParam()); cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); if (PERF_RUN_GPU()) { cv::gpu::GpuMat d_frame(frame); cv::gpu::FGDStatModel d_model(4); d_model.create(d_frame); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); d_frame.upload(frame); startTimer(); if(!next()) break; d_model.update(d_frame); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); d_frame.upload(frame); d_model.update(d_frame); } const cv::gpu::GpuMat background = d_model.background; const cv::gpu::GpuMat foreground = d_model.foreground; GPU_SANITY_CHECK(background, 1e-2, ERROR_RELATIVE); GPU_SANITY_CHECK(foreground, 1e-2, ERROR_RELATIVE); } else { IplImage ipl_frame = frame; cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame)); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); ipl_frame = frame; startTimer(); if(!next()) break; cvUpdateBGStatModel(&ipl_frame, model); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); ipl_frame = frame; cvUpdateBGStatModel(&ipl_frame, model); } const cv::Mat background = model->background; const cv::Mat foreground = model->foreground; CPU_SANITY_CHECK(background); CPU_SANITY_CHECK(foreground); } } #endif ////////////////////////////////////////////////////// // MOG #if BUILD_WITH_VIDEO_INPUT_SUPPORT DEF_PARAM_TEST(Video_Cn_LearningRate, string, MatCn, double); PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4, Values(0.0, 0.01))) { const int numIters = 10; const string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); const int cn = GET_PARAM(1); const float learningRate = static_cast<float>(GET_PARAM(2)); cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } if (PERF_RUN_GPU()) { cv::gpu::GpuMat d_frame(frame); cv::gpu::MOG_GPU d_mog; cv::gpu::GpuMat foreground; d_mog(d_frame, foreground, learningRate); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } d_frame.upload(frame); startTimer(); if(!next()) break; d_mog(d_frame, foreground, learningRate); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } d_frame.upload(frame); d_mog(d_frame, foreground, learningRate); } GPU_SANITY_CHECK(foreground); } else { cv::BackgroundSubtractorMOG mog; cv::Mat foreground; mog(frame, foreground, learningRate); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } startTimer(); if(!next()) break; mog(frame, foreground, learningRate); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } mog(frame, foreground, learningRate); } CPU_SANITY_CHECK(foreground); } } #endif ////////////////////////////////////////////////////// // MOG2 #if BUILD_WITH_VIDEO_INPUT_SUPPORT DEF_PARAM_TEST(Video_Cn, string, int); PERF_TEST_P(Video_Cn, DISABLED_Video_MOG2, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4)) { const int numIters = 10; const string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); const int cn = GET_PARAM(1); cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } if (PERF_RUN_GPU()) { cv::gpu::MOG2_GPU d_mog2; d_mog2.bShadowDetection = false; cv::gpu::GpuMat d_frame(frame); cv::gpu::GpuMat foreground; d_mog2(d_frame, foreground); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } d_frame.upload(frame); startTimer(); if(!next()) break; d_mog2(d_frame, foreground); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } d_frame.upload(frame); d_mog2(d_frame, foreground); } GPU_SANITY_CHECK(foreground); } else { cv::BackgroundSubtractorMOG2 mog2; mog2.set("detectShadows", false); cv::Mat foreground; mog2(frame, foreground); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } startTimer(); if(!next()) break; mog2(frame, foreground); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } mog2(frame, foreground); } CPU_SANITY_CHECK(foreground); } } #endif ////////////////////////////////////////////////////// // MOG2GetBackgroundImage #if BUILD_WITH_VIDEO_INPUT_SUPPORT PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4)) { const string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); const int cn = GET_PARAM(1); cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; if (PERF_RUN_GPU()) { cv::gpu::GpuMat d_frame; cv::gpu::MOG2_GPU d_mog2; cv::gpu::GpuMat d_foreground; for (int i = 0; i < 10; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } d_frame.upload(frame); d_mog2(d_frame, d_foreground); } cv::gpu::GpuMat background; TEST_CYCLE() d_mog2.getBackgroundImage(background); GPU_SANITY_CHECK(background, 1); } else { cv::BackgroundSubtractorMOG2 mog2; cv::Mat foreground; for (int i = 0; i < 10; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } mog2(frame, foreground); } cv::Mat background; TEST_CYCLE() mog2.getBackgroundImage(background); CPU_SANITY_CHECK(background); } } #endif ////////////////////////////////////////////////////// // GMG #if BUILD_WITH_VIDEO_INPUT_SUPPORT DEF_PARAM_TEST(Video_Cn_MaxFeatures, string, MatCn, int); PERF_TEST_P(Video_Cn_MaxFeatures, Video_GMG, Combine(Values(string("gpu/video/768x576.avi")), GPU_CHANNELS_1_3_4, Values(20, 40, 60))) { const int numIters = 150; const std::string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); const int cn = GET_PARAM(1); const int maxFeatures = GET_PARAM(2); cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } if (PERF_RUN_GPU()) { cv::gpu::GpuMat d_frame(frame); cv::gpu::GpuMat foreground; cv::gpu::GMG_GPU d_gmg; d_gmg.maxFeatures = maxFeatures; d_gmg(d_frame, foreground); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; if (frame.empty()) { cap.release(); cap.open(inputFile); cap >> frame; } if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } d_frame.upload(frame); startTimer(); if(!next()) break; d_gmg(d_frame, foreground); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; if (frame.empty()) { cap.release(); cap.open(inputFile); cap >> frame; } if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } d_frame.upload(frame); d_gmg(d_frame, foreground); } GPU_SANITY_CHECK(foreground); } else { cv::Mat foreground; cv::Mat zeros(frame.size(), CV_8UC1, cv::Scalar::all(0)); cv::BackgroundSubtractorGMG gmg; gmg.set("maxFeatures", maxFeatures); gmg.initialize(frame.size(), 0.0, 255.0); gmg(frame, foreground); int i = 0; // collect performance data for (; i < numIters; ++i) { cap >> frame; if (frame.empty()) { cap.release(); cap.open(inputFile); cap >> frame; } if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } startTimer(); if(!next()) break; gmg(frame, foreground); stopTimer(); } // process last frame in sequence to get data for sanity test for (; i < numIters; ++i) { cap >> frame; if (frame.empty()) { cap.release(); cap.open(inputFile); cap >> frame; } if (cn != 3) { cv::Mat temp; if (cn == 1) cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY); else cv::cvtColor(frame, temp, cv::COLOR_BGR2BGRA); cv::swap(temp, frame); } gmg(frame, foreground); } CPU_SANITY_CHECK(foreground); } } #endif ////////////////////////////////////////////////////// // VideoReader #if defined(HAVE_NVCUVID) && BUILD_WITH_VIDEO_INPUT_SUPPORT PERF_TEST_P(Video, DISABLED_Video_VideoReader, Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi")) { declare.time(20); const string inputFile = perf::TestBase::getDataPath(GetParam()); if (PERF_RUN_GPU()) { cv::gpu::VideoReader_GPU d_reader(inputFile); ASSERT_TRUE( d_reader.isOpened() ); cv::gpu::GpuMat frame; TEST_CYCLE_N(10) d_reader.read(frame); GPU_SANITY_CHECK(frame); } else { cv::VideoCapture reader(inputFile); ASSERT_TRUE( reader.isOpened() ); cv::Mat frame; TEST_CYCLE_N(10) reader >> frame; CPU_SANITY_CHECK(frame); } } #endif ////////////////////////////////////////////////////// // VideoWriter #if defined(HAVE_NVCUVID) && defined(WIN32) PERF_TEST_P(Video, DISABLED_Video_VideoWriter, Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi")) { declare.time(30); const string inputFile = perf::TestBase::getDataPath(GetParam()); const string outputFile = cv::tempfile(".avi"); const double FPS = 25.0; cv::VideoCapture reader(inputFile); ASSERT_TRUE( reader.isOpened() ); cv::Mat frame; if (PERF_RUN_GPU()) { cv::gpu::VideoWriter_GPU d_writer; cv::gpu::GpuMat d_frame; for (int i = 0; i < 10; ++i) { reader >> frame; ASSERT_FALSE(frame.empty()); d_frame.upload(frame); if (!d_writer.isOpened()) d_writer.open(outputFile, frame.size(), FPS); startTimer(); next(); d_writer.write(d_frame); stopTimer(); } } else { cv::VideoWriter writer; for (int i = 0; i < 10; ++i) { reader >> frame; ASSERT_FALSE(frame.empty()); if (!writer.isOpened()) writer.open(outputFile, CV_FOURCC('X', 'V', 'I', 'D'), FPS, frame.size()); startTimer(); next(); writer.write(frame); stopTimer(); } } SANITY_CHECK(frame); } #endif