/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "_modelest.h" using namespace cv; template<typename T> int icvCompressPoints( T* ptr, const uchar* mask, int mstep, int count ) { int i, j; for( i = j = 0; i < count; i++ ) if( mask[i*mstep] ) { if( i > j ) ptr[j] = ptr[i]; j++; } return j; } class CvHomographyEstimator : public CvModelEstimator2 { public: CvHomographyEstimator( int modelPoints ); virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ); virtual bool refine( const CvMat* m1, const CvMat* m2, CvMat* model, int maxIters ); protected: virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ); }; CvHomographyEstimator::CvHomographyEstimator(int _modelPoints) : CvModelEstimator2(_modelPoints, cvSize(3,3), 1) { assert( _modelPoints == 4 || _modelPoints == 5 ); checkPartialSubsets = false; } int CvHomographyEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* H ) { int i, count = m1->rows*m1->cols; const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr; const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr; double LtL[9][9], W[9][1], V[9][9]; CvMat _LtL = cvMat( 9, 9, CV_64F, LtL ); CvMat matW = cvMat( 9, 1, CV_64F, W ); CvMat matV = cvMat( 9, 9, CV_64F, V ); CvMat _H0 = cvMat( 3, 3, CV_64F, V[8] ); CvMat _Htemp = cvMat( 3, 3, CV_64F, V[7] ); CvPoint2D64f cM={0,0}, cm={0,0}, sM={0,0}, sm={0,0}; for( i = 0; i < count; i++ ) { cm.x += m[i].x; cm.y += m[i].y; cM.x += M[i].x; cM.y += M[i].y; } cm.x /= count; cm.y /= count; cM.x /= count; cM.y /= count; for( i = 0; i < count; i++ ) { sm.x += fabs(m[i].x - cm.x); sm.y += fabs(m[i].y - cm.y); sM.x += fabs(M[i].x - cM.x); sM.y += fabs(M[i].y - cM.y); } if( fabs(sm.x) < DBL_EPSILON || fabs(sm.y) < DBL_EPSILON || fabs(sM.x) < DBL_EPSILON || fabs(sM.y) < DBL_EPSILON ) return 0; sm.x = count/sm.x; sm.y = count/sm.y; sM.x = count/sM.x; sM.y = count/sM.y; double invHnorm[9] = { 1./sm.x, 0, cm.x, 0, 1./sm.y, cm.y, 0, 0, 1 }; double Hnorm2[9] = { sM.x, 0, -cM.x*sM.x, 0, sM.y, -cM.y*sM.y, 0, 0, 1 }; CvMat _invHnorm = cvMat( 3, 3, CV_64FC1, invHnorm ); CvMat _Hnorm2 = cvMat( 3, 3, CV_64FC1, Hnorm2 ); cvZero( &_LtL ); for( i = 0; i < count; i++ ) { double x = (m[i].x - cm.x)*sm.x, y = (m[i].y - cm.y)*sm.y; double X = (M[i].x - cM.x)*sM.x, Y = (M[i].y - cM.y)*sM.y; double Lx[] = { X, Y, 1, 0, 0, 0, -x*X, -x*Y, -x }; double Ly[] = { 0, 0, 0, X, Y, 1, -y*X, -y*Y, -y }; int j, k; for( j = 0; j < 9; j++ ) for( k = j; k < 9; k++ ) LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k]; } cvCompleteSymm( &_LtL ); //cvSVD( &_LtL, &matW, 0, &matV, CV_SVD_MODIFY_A + CV_SVD_V_T ); cvEigenVV( &_LtL, &matV, &matW ); cvMatMul( &_invHnorm, &_H0, &_Htemp ); cvMatMul( &_Htemp, &_Hnorm2, &_H0 ); cvConvertScale( &_H0, H, 1./_H0.data.db[8] ); return 1; } void CvHomographyEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* _err ) { int i, count = m1->rows*m1->cols; const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr; const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr; const double* H = model->data.db; float* err = _err->data.fl; for( i = 0; i < count; i++ ) { double ww = 1./(H[6]*M[i].x + H[7]*M[i].y + 1.); double dx = (H[0]*M[i].x + H[1]*M[i].y + H[2])*ww - m[i].x; double dy = (H[3]*M[i].x + H[4]*M[i].y + H[5])*ww - m[i].y; err[i] = (float)(dx*dx + dy*dy); } } bool CvHomographyEstimator::refine( const CvMat* m1, const CvMat* m2, CvMat* model, int maxIters ) { CvLevMarq solver(8, 0, cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, maxIters, DBL_EPSILON)); int i, j, k, count = m1->rows*m1->cols; const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr; const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr; CvMat modelPart = cvMat( solver.param->rows, solver.param->cols, model->type, model->data.ptr ); cvCopy( &modelPart, solver.param ); for(;;) { const CvMat* _param = 0; CvMat *_JtJ = 0, *_JtErr = 0; double* _errNorm = 0; if( !solver.updateAlt( _param, _JtJ, _JtErr, _errNorm )) break; for( i = 0; i < count; i++ ) { const double* h = _param->data.db; double Mx = M[i].x, My = M[i].y; double ww = h[6]*Mx + h[7]*My + 1.; ww = fabs(ww) > DBL_EPSILON ? 1./ww : 0; double _xi = (h[0]*Mx + h[1]*My + h[2])*ww; double _yi = (h[3]*Mx + h[4]*My + h[5])*ww; double err[] = { _xi - m[i].x, _yi - m[i].y }; if( _JtJ || _JtErr ) { double J[][8] = { { Mx*ww, My*ww, ww, 0, 0, 0, -Mx*ww*_xi, -My*ww*_xi }, { 0, 0, 0, Mx*ww, My*ww, ww, -Mx*ww*_yi, -My*ww*_yi } }; for( j = 0; j < 8; j++ ) { for( k = j; k < 8; k++ ) _JtJ->data.db[j*8+k] += J[0][j]*J[0][k] + J[1][j]*J[1][k]; _JtErr->data.db[j] += J[0][j]*err[0] + J[1][j]*err[1]; } } if( _errNorm ) *_errNorm += err[0]*err[0] + err[1]*err[1]; } } cvCopy( solver.param, &modelPart ); return true; } CV_IMPL int cvFindHomography( const CvMat* objectPoints, const CvMat* imagePoints, CvMat* __H, int method, double ransacReprojThreshold, CvMat* mask ) { const double confidence = 0.995; const int maxIters = 2000; const double defaultRANSACReprojThreshold = 3; bool result = false; Ptr<CvMat> m, M, tempMask; double H[9]; CvMat matH = cvMat( 3, 3, CV_64FC1, H ); int count; CV_Assert( CV_IS_MAT(imagePoints) && CV_IS_MAT(objectPoints) ); count = MAX(imagePoints->cols, imagePoints->rows); CV_Assert( count >= 4 ); if( ransacReprojThreshold <= 0 ) ransacReprojThreshold = defaultRANSACReprojThreshold; m = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( imagePoints, m ); M = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( objectPoints, M ); if( mask ) { CV_Assert( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) && (mask->rows == 1 || mask->cols == 1) && mask->rows*mask->cols == count ); } if( mask || count > 4 ) tempMask = cvCreateMat( 1, count, CV_8U ); if( !tempMask.empty() ) cvSet( tempMask, cvScalarAll(1.) ); CvHomographyEstimator estimator(4); if( count == 4 ) method = 0; if( method == CV_LMEDS ) result = estimator.runLMeDS( M, m, &matH, tempMask, confidence, maxIters ); else if( method == CV_RANSAC ) result = estimator.runRANSAC( M, m, &matH, tempMask, ransacReprojThreshold, confidence, maxIters); else result = estimator.runKernel( M, m, &matH ) > 0; if( result && count > 4 ) { icvCompressPoints( (CvPoint2D64f*)M->data.ptr, tempMask->data.ptr, 1, count ); count = icvCompressPoints( (CvPoint2D64f*)m->data.ptr, tempMask->data.ptr, 1, count ); M->cols = m->cols = count; if( method == CV_RANSAC ) estimator.runKernel( M, m, &matH ); estimator.refine( M, m, &matH, 10 ); } if( result ) cvConvert( &matH, __H ); if( mask && tempMask ) { if( CV_ARE_SIZES_EQ(mask, tempMask) ) cvCopy( tempMask, mask ); else cvTranspose( tempMask, mask ); } return (int)result; } /* Evaluation of Fundamental Matrix from point correspondences. The original code has been written by Valery Mosyagin */ /* The algorithms (except for RANSAC) and the notation have been taken from Zhengyou Zhang's research report "Determining the Epipolar Geometry and its Uncertainty: A Review" that can be found at http://www-sop.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html */ /************************************** 7-point algorithm *******************************/ class CvFMEstimator : public CvModelEstimator2 { public: CvFMEstimator( int _modelPoints ); virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ); virtual int run7Point( const CvMat* m1, const CvMat* m2, CvMat* model ); virtual int run8Point( const CvMat* m1, const CvMat* m2, CvMat* model ); protected: virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ); }; CvFMEstimator::CvFMEstimator( int _modelPoints ) : CvModelEstimator2( _modelPoints, cvSize(3,3), _modelPoints == 7 ? 3 : 1 ) { assert( _modelPoints == 7 || _modelPoints == 8 ); } int CvFMEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ) { return modelPoints == 7 ? run7Point( m1, m2, model ) : run8Point( m1, m2, model ); } int CvFMEstimator::run7Point( const CvMat* _m1, const CvMat* _m2, CvMat* _fmatrix ) { double a[7*9], w[7], v[9*9], c[4], r[3]; double* f1, *f2; double t0, t1, t2; CvMat A = cvMat( 7, 9, CV_64F, a ); CvMat V = cvMat( 9, 9, CV_64F, v ); CvMat W = cvMat( 7, 1, CV_64F, w ); CvMat coeffs = cvMat( 1, 4, CV_64F, c ); CvMat roots = cvMat( 1, 3, CV_64F, r ); const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr; const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr; double* fmatrix = _fmatrix->data.db; int i, k, n; // form a linear system: i-th row of A(=a) represents // the equation: (m2[i], 1)'*F*(m1[i], 1) = 0 for( i = 0; i < 7; i++ ) { double x0 = m1[i].x, y0 = m1[i].y; double x1 = m2[i].x, y1 = m2[i].y; a[i*9+0] = x1*x0; a[i*9+1] = x1*y0; a[i*9+2] = x1; a[i*9+3] = y1*x0; a[i*9+4] = y1*y0; a[i*9+5] = y1; a[i*9+6] = x0; a[i*9+7] = y0; a[i*9+8] = 1; } // A*(f11 f12 ... f33)' = 0 is singular (7 equations for 9 variables), so // the solution is linear subspace of dimensionality 2. // => use the last two singular vectors as a basis of the space // (according to SVD properties) cvSVD( &A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T ); f1 = v + 7*9; f2 = v + 8*9; // f1, f2 is a basis => lambda*f1 + mu*f2 is an arbitrary f. matrix. // as it is determined up to a scale, normalize lambda & mu (lambda + mu = 1), // so f ~ lambda*f1 + (1 - lambda)*f2. // use the additional constraint det(f) = det(lambda*f1 + (1-lambda)*f2) to find lambda. // it will be a cubic equation. // find c - polynomial coefficients. for( i = 0; i < 9; i++ ) f1[i] -= f2[i]; t0 = f2[4]*f2[8] - f2[5]*f2[7]; t1 = f2[3]*f2[8] - f2[5]*f2[6]; t2 = f2[3]*f2[7] - f2[4]*f2[6]; c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2; c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 - f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) + f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) - f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) + f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) - f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) + f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]); t0 = f1[4]*f1[8] - f1[5]*f1[7]; t1 = f1[3]*f1[8] - f1[5]*f1[6]; t2 = f1[3]*f1[7] - f1[4]*f1[6]; c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 - f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) + f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) - f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) + f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) - f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) + f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]); c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2; // solve the cubic equation; there can be 1 to 3 roots ... n = cvSolveCubic( &coeffs, &roots ); if( n < 1 || n > 3 ) return n; for( k = 0; k < n; k++, fmatrix += 9 ) { // for each root form the fundamental matrix double lambda = r[k], mu = 1.; double s = f1[8]*r[k] + f2[8]; // normalize each matrix, so that F(3,3) (~fmatrix[8]) == 1 if( fabs(s) > DBL_EPSILON ) { mu = 1./s; lambda *= mu; fmatrix[8] = 1.; } else fmatrix[8] = 0.; for( i = 0; i < 8; i++ ) fmatrix[i] = f1[i]*lambda + f2[i]*mu; } return n; } int CvFMEstimator::run8Point( const CvMat* _m1, const CvMat* _m2, CvMat* _fmatrix ) { double a[9*9], w[9], v[9*9]; CvMat W = cvMat( 1, 9, CV_64F, w ); CvMat V = cvMat( 9, 9, CV_64F, v ); CvMat A = cvMat( 9, 9, CV_64F, a ); CvMat U, F0, TF; CvPoint2D64f m0c = {0,0}, m1c = {0,0}; double t, scale0 = 0, scale1 = 0; const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr; const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr; double* fmatrix = _fmatrix->data.db; CV_Assert( (_m1->cols == 1 || _m1->rows == 1) && CV_ARE_SIZES_EQ(_m1, _m2)); int i, j, k, count = _m1->cols*_m1->rows; // compute centers and average distances for each of the two point sets for( i = 0; i < count; i++ ) { double x = m1[i].x, y = m1[i].y; m0c.x += x; m0c.y += y; x = m2[i].x, y = m2[i].y; m1c.x += x; m1c.y += y; } // calculate the normalizing transformations for each of the point sets: // after the transformation each set will have the mass center at the coordinate origin // and the average distance from the origin will be ~sqrt(2). t = 1./count; m0c.x *= t; m0c.y *= t; m1c.x *= t; m1c.y *= t; for( i = 0; i < count; i++ ) { double x = m1[i].x - m0c.x, y = m1[i].y - m0c.y; scale0 += sqrt(x*x + y*y); x = m2[i].x - m1c.x, y = m2[i].y - m1c.y; scale1 += sqrt(x*x + y*y); } scale0 *= t; scale1 *= t; if( scale0 < FLT_EPSILON || scale1 < FLT_EPSILON ) return 0; scale0 = sqrt(2.)/scale0; scale1 = sqrt(2.)/scale1; cvZero( &A ); // form a linear system Ax=0: for each selected pair of points m1 & m2, // the row of A(=a) represents the coefficients of equation: (m2, 1)'*F*(m1, 1) = 0 // to save computation time, we compute (At*A) instead of A and then solve (At*A)x=0. for( i = 0; i < count; i++ ) { double x0 = (m1[i].x - m0c.x)*scale0; double y0 = (m1[i].y - m0c.y)*scale0; double x1 = (m2[i].x - m1c.x)*scale1; double y1 = (m2[i].y - m1c.y)*scale1; double r[9] = { x1*x0, x1*y0, x1, y1*x0, y1*y0, y1, x0, y0, 1 }; for( j = 0; j < 9; j++ ) for( k = 0; k < 9; k++ ) a[j*9+k] += r[j]*r[k]; } cvEigenVV(&A, &V, &W); for( i = 0; i < 9; i++ ) { if( fabs(w[i]) < DBL_EPSILON ) break; } if( i < 8 ) return 0; F0 = cvMat( 3, 3, CV_64F, v + 9*8 ); // take the last column of v as a solution of Af = 0 // make F0 singular (of rank 2) by decomposing it with SVD, // zeroing the last diagonal element of W and then composing the matrices back. // use v as a temporary storage for different 3x3 matrices W = U = V = TF = F0; W.data.db = v; U.data.db = v + 9; V.data.db = v + 18; TF.data.db = v + 27; cvSVD( &F0, &W, &U, &V, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); W.data.db[8] = 0.; // F0 <- U*diag([W(1), W(2), 0])*V' cvGEMM( &U, &W, 1., 0, 0., &TF, CV_GEMM_A_T ); cvGEMM( &TF, &V, 1., 0, 0., &F0, 0/*CV_GEMM_B_T*/ ); // apply the transformation that is inverse // to what we used to normalize the point coordinates { double tt0[] = { scale0, 0, -scale0*m0c.x, 0, scale0, -scale0*m0c.y, 0, 0, 1 }; double tt1[] = { scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 }; CvMat T0, T1; T0 = T1 = F0; T0.data.db = tt0; T1.data.db = tt1; // F0 <- T1'*F0*T0 cvGEMM( &T1, &F0, 1., 0, 0., &TF, CV_GEMM_A_T ); F0.data.db = fmatrix; cvGEMM( &TF, &T0, 1., 0, 0., &F0, 0 ); // make F(3,3) = 1 if( fabs(F0.data.db[8]) > FLT_EPSILON ) cvScale( &F0, &F0, 1./F0.data.db[8] ); } return 1; } void CvFMEstimator::computeReprojError( const CvMat* _m1, const CvMat* _m2, const CvMat* model, CvMat* _err ) { int i, count = _m1->rows*_m1->cols; const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr; const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr; const double* F = model->data.db; float* err = _err->data.fl; for( i = 0; i < count; i++ ) { double a, b, c, d1, d2, s1, s2; a = F[0]*m1[i].x + F[1]*m1[i].y + F[2]; b = F[3]*m1[i].x + F[4]*m1[i].y + F[5]; c = F[6]*m1[i].x + F[7]*m1[i].y + F[8]; s2 = 1./(a*a + b*b); d2 = m2[i].x*a + m2[i].y*b + c; a = F[0]*m2[i].x + F[3]*m2[i].y + F[6]; b = F[1]*m2[i].x + F[4]*m2[i].y + F[7]; c = F[2]*m2[i].x + F[5]*m2[i].y + F[8]; s1 = 1./(a*a + b*b); d1 = m1[i].x*a + m1[i].y*b + c; err[i] = (float)std::max(d1*d1*s1, d2*d2*s2); } } CV_IMPL int cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, CvMat* fmatrix, int method, double param1, double param2, CvMat* mask ) { int result = 0; Ptr<CvMat> m1, m2, tempMask; double F[3*9]; CvMat _F3x3 = cvMat( 3, 3, CV_64FC1, F ), _F9x3 = cvMat( 9, 3, CV_64FC1, F ); int count; CV_Assert( CV_IS_MAT(points1) && CV_IS_MAT(points2) && CV_ARE_SIZES_EQ(points1, points2) ); CV_Assert( CV_IS_MAT(fmatrix) && fmatrix->cols == 3 && (fmatrix->rows == 3 || (fmatrix->rows == 9 && method == CV_FM_7POINT)) ); count = MAX(points1->cols, points1->rows); if( count < 7 ) return 0; m1 = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( points1, m1 ); m2 = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( points2, m2 ); if( mask ) { CV_Assert( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) && (mask->rows == 1 || mask->cols == 1) && mask->rows*mask->cols == count ); } if( mask || count >= 8 ) tempMask = cvCreateMat( 1, count, CV_8U ); if( !tempMask.empty() ) cvSet( tempMask, cvScalarAll(1.) ); CvFMEstimator estimator(7); if( count == 7 ) result = estimator.run7Point(m1, m2, &_F9x3); else if( method == CV_FM_8POINT ) result = estimator.run8Point(m1, m2, &_F3x3); else { if( param1 <= 0 ) param1 = 3; if( param2 < DBL_EPSILON || param2 > 1 - DBL_EPSILON ) param2 = 0.99; if( (method & ~3) == CV_RANSAC && count >= 15 ) result = estimator.runRANSAC(m1, m2, &_F3x3, tempMask, param1, param2 ); else result = estimator.runLMeDS(m1, m2, &_F3x3, tempMask, param2 ); if( result <= 0 ) return 0; /*icvCompressPoints( (CvPoint2D64f*)m1->data.ptr, tempMask->data.ptr, 1, count ); count = icvCompressPoints( (CvPoint2D64f*)m2->data.ptr, tempMask->data.ptr, 1, count ); assert( count >= 8 ); m1->cols = m2->cols = count; estimator.run8Point(m1, m2, &_F3x3);*/ } if( result ) cvConvert( fmatrix->rows == 3 ? &_F3x3 : &_F9x3, fmatrix ); if( mask && tempMask ) { if( CV_ARE_SIZES_EQ(mask, tempMask) ) cvCopy( tempMask, mask ); else cvTranspose( tempMask, mask ); } return result; } CV_IMPL void cvComputeCorrespondEpilines( const CvMat* points, int pointImageID, const CvMat* fmatrix, CvMat* lines ) { int abc_stride, abc_plane_stride, abc_elem_size; int plane_stride, stride, elem_size; int i, dims, count, depth, cn, abc_dims, abc_count, abc_depth, abc_cn; uchar *ap, *bp, *cp; const uchar *xp, *yp, *zp; double f[9]; CvMat F = cvMat( 3, 3, CV_64F, f ); if( !CV_IS_MAT(points) ) CV_Error( !points ? CV_StsNullPtr : CV_StsBadArg, "points parameter is not a valid matrix" ); depth = CV_MAT_DEPTH(points->type); cn = CV_MAT_CN(points->type); if( (depth != CV_32F && depth != CV_64F) || (cn != 1 && cn != 2 && cn != 3) ) CV_Error( CV_StsUnsupportedFormat, "The format of point matrix is unsupported" ); if( cn > 1 ) { dims = cn; CV_Assert( points->rows == 1 || points->cols == 1 ); count = points->rows * points->cols; } else if( points->rows > points->cols ) { dims = cn*points->cols; count = points->rows; } else { if( (points->rows > 1 && cn > 1) || (points->rows == 1 && cn == 1) ) CV_Error( CV_StsBadSize, "The point matrix does not have a proper layout (2xn, 3xn, nx2 or nx3)" ); dims = points->rows; count = points->cols; } if( dims != 2 && dims != 3 ) CV_Error( CV_StsOutOfRange, "The dimensionality of points must be 2 or 3" ); if( !CV_IS_MAT(fmatrix) ) CV_Error( !fmatrix ? CV_StsNullPtr : CV_StsBadArg, "fmatrix is not a valid matrix" ); if( CV_MAT_TYPE(fmatrix->type) != CV_32FC1 && CV_MAT_TYPE(fmatrix->type) != CV_64FC1 ) CV_Error( CV_StsUnsupportedFormat, "fundamental matrix must have 32fC1 or 64fC1 type" ); if( fmatrix->cols != 3 || fmatrix->rows != 3 ) CV_Error( CV_StsBadSize, "fundamental matrix must be 3x3" ); if( !CV_IS_MAT(lines) ) CV_Error( !lines ? CV_StsNullPtr : CV_StsBadArg, "lines parameter is not a valid matrix" ); abc_depth = CV_MAT_DEPTH(lines->type); abc_cn = CV_MAT_CN(lines->type); if( (abc_depth != CV_32F && abc_depth != CV_64F) || (abc_cn != 1 && abc_cn != 3) ) CV_Error( CV_StsUnsupportedFormat, "The format of the matrix of lines is unsupported" ); if( abc_cn > 1 ) { abc_dims = abc_cn; CV_Assert( lines->rows == 1 || lines->cols == 1 ); abc_count = lines->rows * lines->cols; } else if( lines->rows > lines->cols ) { abc_dims = abc_cn*lines->cols; abc_count = lines->rows; } else { if( (lines->rows > 1 && abc_cn > 1) || (lines->rows == 1 && abc_cn == 1) ) CV_Error( CV_StsBadSize, "The lines matrix does not have a proper layout (3xn or nx3)" ); abc_dims = lines->rows; abc_count = lines->cols; } if( abc_dims != 3 ) CV_Error( CV_StsOutOfRange, "The lines matrix does not have a proper layout (3xn or nx3)" ); if( abc_count != count ) CV_Error( CV_StsUnmatchedSizes, "The numbers of points and lines are different" ); elem_size = CV_ELEM_SIZE(depth); abc_elem_size = CV_ELEM_SIZE(abc_depth); if( cn == 1 && points->rows == dims ) { plane_stride = points->step; stride = elem_size; } else { plane_stride = elem_size; stride = points->rows == 1 ? dims*elem_size : points->step; } if( abc_cn == 1 && lines->rows == 3 ) { abc_plane_stride = lines->step; abc_stride = abc_elem_size; } else { abc_plane_stride = abc_elem_size; abc_stride = lines->rows == 1 ? 3*abc_elem_size : lines->step; } cvConvert( fmatrix, &F ); if( pointImageID == 2 ) cvTranspose( &F, &F ); xp = points->data.ptr; yp = xp + plane_stride; zp = dims == 3 ? yp + plane_stride : 0; ap = lines->data.ptr; bp = ap + abc_plane_stride; cp = bp + abc_plane_stride; for( i = 0; i < count; i++ ) { double x, y, z = 1.; double a, b, c, nu; if( depth == CV_32F ) { x = *(float*)xp; y = *(float*)yp; if( zp ) z = *(float*)zp, zp += stride; } else { x = *(double*)xp; y = *(double*)yp; if( zp ) z = *(double*)zp, zp += stride; } xp += stride; yp += stride; a = f[0]*x + f[1]*y + f[2]*z; b = f[3]*x + f[4]*y + f[5]*z; c = f[6]*x + f[7]*y + f[8]*z; nu = a*a + b*b; nu = nu ? 1./sqrt(nu) : 1.; a *= nu; b *= nu; c *= nu; if( abc_depth == CV_32F ) { *(float*)ap = (float)a; *(float*)bp = (float)b; *(float*)cp = (float)c; } else { *(double*)ap = a; *(double*)bp = b; *(double*)cp = c; } ap += abc_stride; bp += abc_stride; cp += abc_stride; } } CV_IMPL void cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ) { Ptr<CvMat> temp, denom; int i, s_count, s_dims, d_count, d_dims; CvMat _src, _dst, _ones; CvMat* ones = 0; if( !CV_IS_MAT(src) ) CV_Error( !src ? CV_StsNullPtr : CV_StsBadArg, "The input parameter is not a valid matrix" ); if( !CV_IS_MAT(dst) ) CV_Error( !dst ? CV_StsNullPtr : CV_StsBadArg, "The output parameter is not a valid matrix" ); if( src == dst || src->data.ptr == dst->data.ptr ) { if( src != dst && (!CV_ARE_TYPES_EQ(src, dst) || !CV_ARE_SIZES_EQ(src,dst)) ) CV_Error( CV_StsBadArg, "Invalid inplace operation" ); return; } if( src->rows > src->cols ) { if( !((src->cols > 1) ^ (CV_MAT_CN(src->type) > 1)) ) CV_Error( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" ); s_dims = CV_MAT_CN(src->type)*src->cols; s_count = src->rows; } else { if( !((src->rows > 1) ^ (CV_MAT_CN(src->type) > 1)) ) CV_Error( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" ); s_dims = CV_MAT_CN(src->type)*src->rows; s_count = src->cols; } if( src->rows == 1 || src->cols == 1 ) src = cvReshape( src, &_src, 1, s_count ); if( dst->rows > dst->cols ) { if( !((dst->cols > 1) ^ (CV_MAT_CN(dst->type) > 1)) ) CV_Error( CV_StsBadSize, "Either the number of channels or columns or rows in the input matrix must be =1" ); d_dims = CV_MAT_CN(dst->type)*dst->cols; d_count = dst->rows; } else { if( !((dst->rows > 1) ^ (CV_MAT_CN(dst->type) > 1)) ) CV_Error( CV_StsBadSize, "Either the number of channels or columns or rows in the output matrix must be =1" ); d_dims = CV_MAT_CN(dst->type)*dst->rows; d_count = dst->cols; } if( dst->rows == 1 || dst->cols == 1 ) dst = cvReshape( dst, &_dst, 1, d_count ); if( s_count != d_count ) CV_Error( CV_StsUnmatchedSizes, "Both matrices must have the same number of points" ); if( CV_MAT_DEPTH(src->type) < CV_32F || CV_MAT_DEPTH(dst->type) < CV_32F ) CV_Error( CV_StsUnsupportedFormat, "Both matrices must be floating-point (single or double precision)" ); if( s_dims < 2 || s_dims > 4 || d_dims < 2 || d_dims > 4 ) CV_Error( CV_StsOutOfRange, "Both input and output point dimensionality must be 2, 3 or 4" ); if( s_dims < d_dims - 1 || s_dims > d_dims + 1 ) CV_Error( CV_StsUnmatchedSizes, "The dimensionalities of input and output point sets differ too much" ); if( s_dims == d_dims - 1 ) { if( d_count == dst->rows ) { ones = cvGetSubRect( dst, &_ones, cvRect( s_dims, 0, 1, d_count )); dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, s_dims, d_count )); } else { ones = cvGetSubRect( dst, &_ones, cvRect( 0, s_dims, d_count, 1 )); dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, d_count, s_dims )); } } if( s_dims <= d_dims ) { if( src->rows == dst->rows && src->cols == dst->cols ) { if( CV_ARE_TYPES_EQ( src, dst ) ) cvCopy( src, dst ); else cvConvert( src, dst ); } else { if( !CV_ARE_TYPES_EQ( src, dst )) { temp = cvCreateMat( src->rows, src->cols, dst->type ); cvConvert( src, temp ); src = temp; } cvTranspose( src, dst ); } if( ones ) cvSet( ones, cvRealScalar(1.) ); } else { int s_plane_stride, s_stride, d_plane_stride, d_stride, elem_size; if( !CV_ARE_TYPES_EQ( src, dst )) { temp = cvCreateMat( src->rows, src->cols, dst->type ); cvConvert( src, temp ); src = temp; } elem_size = CV_ELEM_SIZE(src->type); if( s_count == src->cols ) s_plane_stride = src->step / elem_size, s_stride = 1; else s_stride = src->step / elem_size, s_plane_stride = 1; if( d_count == dst->cols ) d_plane_stride = dst->step / elem_size, d_stride = 1; else d_stride = dst->step / elem_size, d_plane_stride = 1; denom = cvCreateMat( 1, d_count, dst->type ); if( CV_MAT_DEPTH(dst->type) == CV_32F ) { const float* xs = src->data.fl; const float* ys = xs + s_plane_stride; const float* zs = 0; const float* ws = xs + (s_dims - 1)*s_plane_stride; float* iw = denom->data.fl; float* xd = dst->data.fl; float* yd = xd + d_plane_stride; float* zd = 0; if( d_dims == 3 ) { zs = ys + s_plane_stride; zd = yd + d_plane_stride; } for( i = 0; i < d_count; i++, ws += s_stride ) { float t = *ws; iw[i] = fabs((double)t) > FLT_EPSILON ? t : 1.f; } cvDiv( 0, denom, denom ); if( d_dims == 3 ) for( i = 0; i < d_count; i++ ) { float w = iw[i]; float x = *xs * w, y = *ys * w, z = *zs * w; xs += s_stride; ys += s_stride; zs += s_stride; *xd = x; *yd = y; *zd = z; xd += d_stride; yd += d_stride; zd += d_stride; } else for( i = 0; i < d_count; i++ ) { float w = iw[i]; float x = *xs * w, y = *ys * w; xs += s_stride; ys += s_stride; *xd = x; *yd = y; xd += d_stride; yd += d_stride; } } else { const double* xs = src->data.db; const double* ys = xs + s_plane_stride; const double* zs = 0; const double* ws = xs + (s_dims - 1)*s_plane_stride; double* iw = denom->data.db; double* xd = dst->data.db; double* yd = xd + d_plane_stride; double* zd = 0; if( d_dims == 3 ) { zs = ys + s_plane_stride; zd = yd + d_plane_stride; } for( i = 0; i < d_count; i++, ws += s_stride ) { double t = *ws; iw[i] = fabs(t) > DBL_EPSILON ? t : 1.; } cvDiv( 0, denom, denom ); if( d_dims == 3 ) for( i = 0; i < d_count; i++ ) { double w = iw[i]; double x = *xs * w, y = *ys * w, z = *zs * w; xs += s_stride; ys += s_stride; zs += s_stride; *xd = x; *yd = y; *zd = z; xd += d_stride; yd += d_stride; zd += d_stride; } else for( i = 0; i < d_count; i++ ) { double w = iw[i]; double x = *xs * w, y = *ys * w; xs += s_stride; ys += s_stride; *xd = x; *yd = y; xd += d_stride; yd += d_stride; } } } } cv::Mat cv::findHomography( InputArray _points1, InputArray _points2, int method, double ransacReprojThreshold, OutputArray _mask ) { Mat points1 = _points1.getMat(), points2 = _points2.getMat(); int npoints = points1.checkVector(2); CV_Assert( npoints >= 0 && points2.checkVector(2) == npoints && points1.type() == points2.type()); Mat H(3, 3, CV_64F); CvMat _pt1 = points1, _pt2 = points2; CvMat matH = H, c_mask, *p_mask = 0; if( _mask.needed() ) { _mask.create(npoints, 1, CV_8U, -1, true); p_mask = &(c_mask = _mask.getMat()); } bool ok = cvFindHomography( &_pt1, &_pt2, &matH, method, ransacReprojThreshold, p_mask ) > 0; if( !ok ) H = Scalar(0); return H; } cv::Mat cv::findHomography( InputArray _points1, InputArray _points2, OutputArray _mask, int method, double ransacReprojThreshold ) { return cv::findHomography(_points1, _points2, method, ransacReprojThreshold, _mask); } cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2, int method, double param1, double param2, OutputArray _mask ) { Mat points1 = _points1.getMat(), points2 = _points2.getMat(); int npoints = points1.checkVector(2); CV_Assert( npoints >= 0 && points2.checkVector(2) == npoints && points1.type() == points2.type()); Mat F(method == CV_FM_7POINT ? 9 : 3, 3, CV_64F); CvMat _pt1 = points1, _pt2 = points2; CvMat matF = F, c_mask, *p_mask = 0; if( _mask.needed() ) { _mask.create(npoints, 1, CV_8U, -1, true); p_mask = &(c_mask = _mask.getMat()); } int n = cvFindFundamentalMat( &_pt1, &_pt2, &matF, method, param1, param2, p_mask ); if( n <= 0 ) F = Scalar(0); if( n == 1 ) F = F.rowRange(0, 3); return F; } cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2, OutputArray _mask, int method, double param1, double param2 ) { return cv::findFundamentalMat(_points1, _points2, method, param1, param2, _mask); } void cv::computeCorrespondEpilines( InputArray _points, int whichImage, InputArray _Fmat, OutputArray _lines ) { Mat points = _points.getMat(), F = _Fmat.getMat(); int npoints = points.checkVector(2); if( npoints < 0 ) npoints = points.checkVector(3); CV_Assert( npoints >= 0 && (points.depth() == CV_32F || points.depth() == CV_32S)); _lines.create(npoints, 1, CV_32FC3, -1, true); CvMat c_points = points, c_lines = _lines.getMat(), c_F = F; cvComputeCorrespondEpilines(&c_points, whichImage, &c_F, &c_lines); } void cv::convertPointsFromHomogeneous( InputArray _src, OutputArray _dst ) { Mat src = _src.getMat(); int npoints = src.checkVector(3), cn = 3; if( npoints < 0 ) { npoints = src.checkVector(4); if( npoints >= 0 ) cn = 4; } CV_Assert( npoints >= 0 && (src.depth() == CV_32F || src.depth() == CV_32S)); _dst.create(npoints, 1, CV_MAKETYPE(CV_32F, cn-1)); CvMat c_src = src, c_dst = _dst.getMat(); cvConvertPointsHomogeneous(&c_src, &c_dst); } void cv::convertPointsToHomogeneous( InputArray _src, OutputArray _dst ) { Mat src = _src.getMat(); int npoints = src.checkVector(2), cn = 2; if( npoints < 0 ) { npoints = src.checkVector(3); if( npoints >= 0 ) cn = 3; } CV_Assert( npoints >= 0 && (src.depth() == CV_32F || src.depth() == CV_32S)); _dst.create(npoints, 1, CV_MAKETYPE(CV_32F, cn+1)); CvMat c_src = src, c_dst = _dst.getMat(); cvConvertPointsHomogeneous(&c_src, &c_dst); } void cv::convertPointsHomogeneous( InputArray _src, OutputArray _dst ) { int stype = _src.type(), dtype = _dst.type(); CV_Assert( _dst.fixedType() ); if( CV_MAT_CN(stype) > CV_MAT_CN(dtype) ) convertPointsFromHomogeneous(_src, _dst); else convertPointsToHomogeneous(_src, _dst); } /* End of file. */