/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include "internal_shared.hpp" #include "opencv2/gpu/device/saturate_cast.hpp" #include "opencv2/gpu/device/limits.hpp" namespace cv { namespace gpu { namespace device { namespace stereobp { /////////////////////////////////////////////////////////////// /////////////////////// load constants //////////////////////// /////////////////////////////////////////////////////////////// __constant__ int cndisp; __constant__ float cmax_data_term; __constant__ float cdata_weight; __constant__ float cmax_disc_term; __constant__ float cdisc_single_jump; void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump) { cudaSafeCall( cudaMemcpyToSymbol(cndisp, &ndisp, sizeof(int )) ); cudaSafeCall( cudaMemcpyToSymbol(cmax_data_term, &max_data_term, sizeof(float)) ); cudaSafeCall( cudaMemcpyToSymbol(cdata_weight, &data_weight, sizeof(float)) ); cudaSafeCall( cudaMemcpyToSymbol(cmax_disc_term, &max_disc_term, sizeof(float)) ); cudaSafeCall( cudaMemcpyToSymbol(cdisc_single_jump, &disc_single_jump, sizeof(float)) ); } /////////////////////////////////////////////////////////////// ////////////////////////// comp data ////////////////////////// /////////////////////////////////////////////////////////////// template <int cn> struct PixDiff; template <> struct PixDiff<1> { __device__ __forceinline__ PixDiff(const uchar* ls) { l = *ls; } __device__ __forceinline__ float operator()(const uchar* rs) const { return ::abs((int)l - *rs); } uchar l; }; template <> struct PixDiff<3> { __device__ __forceinline__ PixDiff(const uchar* ls) { l = *((uchar3*)ls); } __device__ __forceinline__ float operator()(const uchar* rs) const { const float tr = 0.299f; const float tg = 0.587f; const float tb = 0.114f; float val = tb * ::abs((int)l.x - rs[0]); val += tg * ::abs((int)l.y - rs[1]); val += tr * ::abs((int)l.z - rs[2]); return val; } uchar3 l; }; template <> struct PixDiff<4> { __device__ __forceinline__ PixDiff(const uchar* ls) { l = *((uchar4*)ls); } __device__ __forceinline__ float operator()(const uchar* rs) const { const float tr = 0.299f; const float tg = 0.587f; const float tb = 0.114f; uchar4 r = *((uchar4*)rs); float val = tb * ::abs((int)l.x - r.x); val += tg * ::abs((int)l.y - r.y); val += tr * ::abs((int)l.z - r.z); return val; } uchar4 l; }; template <int cn, typename D> __global__ void comp_data(const PtrStepSzb left, const PtrStepb right, PtrStep<D> data) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y > 0 && y < left.rows - 1 && x > 0 && x < left.cols - 1) { const uchar* ls = left.ptr(y) + x * cn; const PixDiff<cn> pixDiff(ls); const uchar* rs = right.ptr(y) + x * cn; D* ds = data.ptr(y) + x; const size_t disp_step = data.step * left.rows / sizeof(D); for (int disp = 0; disp < cndisp; disp++) { if (x - disp >= 1) { float val = pixDiff(rs - disp * cn); ds[disp * disp_step] = saturate_cast<D>(fmin(cdata_weight * val, cdata_weight * cmax_data_term)); } else { ds[disp * disp_step] = saturate_cast<D>(cdata_weight * cmax_data_term); } } } } template<typename T, typename D> void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream); template <> void comp_data_gpu<uchar, short>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<1, short><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<short>)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu<uchar, float>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<1, float><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<float>)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu<uchar3, short>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<3, short><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<short>)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu<uchar3, float>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<3, float><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<float>)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu<uchar4, short>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<4, short><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<short>)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template <> void comp_data_gpu<uchar4, float>(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(left.cols, threads.x); grid.y = divUp(left.rows, threads.y); comp_data<4, float><<<grid, threads, 0, stream>>>(left, right, (PtrStepSz<float>)data); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } /////////////////////////////////////////////////////////////// //////////////////////// data step down /////////////////////// /////////////////////////////////////////////////////////////// template <typename T> __global__ void data_step_down(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStep<T> src, PtrStep<T> dst) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < dst_cols && y < dst_rows) { for (int d = 0; d < cndisp; ++d) { float dst_reg = src.ptr(d * src_rows + ::min(2*y+0, src_rows-1))[::min(2*x+0, src_cols-1)]; dst_reg += src.ptr(d * src_rows + ::min(2*y+1, src_rows-1))[::min(2*x+0, src_cols-1)]; dst_reg += src.ptr(d * src_rows + ::min(2*y+0, src_rows-1))[::min(2*x+1, src_cols-1)]; dst_reg += src.ptr(d * src_rows + ::min(2*y+1, src_rows-1))[::min(2*x+1, src_cols-1)]; dst.ptr(d * dst_rows + y)[x] = saturate_cast<T>(dst_reg); } } } template<typename T> void data_step_down_gpu(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(dst_cols, threads.x); grid.y = divUp(dst_rows, threads.y); data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_cols, src_rows, (PtrStepSz<T>)src, (PtrStepSz<T>)dst); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void data_step_down_gpu<short>(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); template void data_step_down_gpu<float>(int dst_cols, int dst_rows, int src_cols, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); /////////////////////////////////////////////////////////////// /////////////////// level up messages //////////////////////// /////////////////////////////////////////////////////////////// template <typename T> __global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const PtrStep<T> src, PtrStep<T> dst) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x < dst_cols && y < dst_rows) { const size_t dst_disp_step = dst.step * dst_rows / sizeof(T); const size_t src_disp_step = src.step * src_rows / sizeof(T); T* dstr = dst.ptr(y ) + x; const T* srcr = src.ptr(y/2) + x/2; for (int d = 0; d < cndisp; ++d) dstr[d * dst_disp_step] = srcr[d * src_disp_step]; } } template <typename T> void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(dst_cols, threads.x); grid.y = divUp(dst_rows, threads.y); int src_idx = (dst_idx + 1) & 1; level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mus[src_idx], (PtrStepSz<T>)mus[dst_idx]); cudaSafeCall( cudaGetLastError() ); level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mds[src_idx], (PtrStepSz<T>)mds[dst_idx]); cudaSafeCall( cudaGetLastError() ); level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mls[src_idx], (PtrStepSz<T>)mls[dst_idx]); cudaSafeCall( cudaGetLastError() ); level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (PtrStepSz<T>)mrs[src_idx], (PtrStepSz<T>)mrs[dst_idx]); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void level_up_messages_gpu<short>(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); template void level_up_messages_gpu<float>(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); /////////////////////////////////////////////////////////////// //////////////////// calc all iterations ///////////////////// /////////////////////////////////////////////////////////////// template <typename T> __device__ void calc_min_linear_penalty(T* dst, size_t step) { float prev = dst[0]; float cur; for (int disp = 1; disp < cndisp; ++disp) { prev += cdisc_single_jump; cur = dst[step * disp]; if (prev < cur) { cur = prev; dst[step * disp] = saturate_cast<T>(prev); } prev = cur; } prev = dst[(cndisp - 1) * step]; for (int disp = cndisp - 2; disp >= 0; disp--) { prev += cdisc_single_jump; cur = dst[step * disp]; if (prev < cur) { cur = prev; dst[step * disp] = saturate_cast<T>(prev); } prev = cur; } } template <typename T> __device__ void message(const T* msg1, const T* msg2, const T* msg3, const T* data, T* dst, size_t msg_disp_step, size_t data_disp_step) { float minimum = device::numeric_limits<float>::max(); for(int i = 0; i < cndisp; ++i) { float dst_reg = msg1[msg_disp_step * i]; dst_reg += msg2[msg_disp_step * i]; dst_reg += msg3[msg_disp_step * i]; dst_reg += data[data_disp_step * i]; if (dst_reg < minimum) minimum = dst_reg; dst[msg_disp_step * i] = saturate_cast<T>(dst_reg); } calc_min_linear_penalty(dst, msg_disp_step); minimum += cmax_disc_term; float sum = 0; for(int i = 0; i < cndisp; ++i) { float dst_reg = dst[msg_disp_step * i]; if (dst_reg > minimum) { dst_reg = minimum; dst[msg_disp_step * i] = saturate_cast<T>(minimum); } sum += dst_reg; } sum /= cndisp; for(int i = 0; i < cndisp; ++i) dst[msg_disp_step * i] -= sum; } template <typename T> __global__ void one_iteration(int t, int elem_step, T* u, T* d, T* l, T* r, const PtrStep<T> data, int cols, int rows) { const int y = blockIdx.y * blockDim.y + threadIdx.y; const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1); if ((y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1)) { T* us = u + y * elem_step + x; T* ds = d + y * elem_step + x; T* ls = l + y * elem_step + x; T* rs = r + y * elem_step + x; const T* dt = data.ptr(y) + x; size_t msg_disp_step = elem_step * rows; size_t data_disp_step = data.step * rows / sizeof(T); message(us + elem_step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step); message(ds - elem_step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step); message(us + elem_step, ds - elem_step, rs - 1, dt, rs, msg_disp_step, data_disp_step); message(us + elem_step, ds - elem_step, ls + 1, dt, ls, msg_disp_step, data_disp_step); } } template <typename T> void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(cols, threads.x << 1); grid.y = divUp(rows, threads.y); int elem_step = (int)(u.step / sizeof(T)); for(int t = 0; t < iters; ++t) { one_iteration<T><<<grid, threads, 0, stream>>>(t, elem_step, (T*)u.data, (T*)d.data, (T*)l.data, (T*)r.data, (PtrStepSz<T>)data, cols, rows); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } } template void calc_all_iterations_gpu<short>(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); template void calc_all_iterations_gpu<float>(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); /////////////////////////////////////////////////////////////// /////////////////////////// output //////////////////////////// /////////////////////////////////////////////////////////////// template <typename T> __global__ void output(const int elem_step, const T* u, const T* d, const T* l, const T* r, const T* data, PtrStepSz<short> disp) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (y > 0 && y < disp.rows - 1 && x > 0 && x < disp.cols - 1) { const T* us = u + (y + 1) * elem_step + x; const T* ds = d + (y - 1) * elem_step + x; const T* ls = l + y * elem_step + (x + 1); const T* rs = r + y * elem_step+ (x - 1); const T* dt = data + y * elem_step + x; size_t disp_step = disp.rows * elem_step; int best = 0; float best_val = numeric_limits<float>::max(); for (int d = 0; d < cndisp; ++d) { float val = us[d * disp_step]; val += ds[d * disp_step]; val += ls[d * disp_step]; val += rs[d * disp_step]; val += dt[d * disp_step]; if (val < best_val) { best_val = val; best = d; } } disp.ptr(y)[x] = saturate_cast<short>(best); } } template <typename T> void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream) { dim3 threads(32, 8, 1); dim3 grid(1, 1, 1); grid.x = divUp(disp.cols, threads.x); grid.y = divUp(disp.rows, threads.y); int elem_step = static_cast<int>(u.step/sizeof(T)); output<T><<<grid, threads, 0, stream>>>(elem_step, (const T*)u.data, (const T*)d.data, (const T*)l.data, (const T*)r.data, (const T*)data.data, disp); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void output_gpu<short>(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream); template void output_gpu<float>(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream); } // namespace stereobp }}} // namespace cv { namespace gpu { namespace device #endif /* CUDA_DISABLER */