#include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include <cctype> #include <stdio.h> #include <string.h> #include <time.h> using namespace cv; using namespace std; const char * usage = " \nexample command line for calibration from a live feed.\n" " calibration -w 4 -h 5 -s 0.025 -o camera.yml -op -oe\n" " \n" " example command line for calibration from a list of stored images:\n" " imagelist_creator image_list.xml *.png\n" " calibration -w 4 -h 5 -s 0.025 -o camera.yml -op -oe image_list.xml\n" " where image_list.xml is the standard OpenCV XML/YAML\n" " use imagelist_creator to create the xml or yaml list\n" " file consisting of the list of strings, e.g.:\n" " \n" "<?xml version=\"1.0\"?>\n" "<opencv_storage>\n" "<images>\n" "view000.png\n" "view001.png\n" "<!-- view002.png -->\n" "view003.png\n" "view010.png\n" "one_extra_view.jpg\n" "</images>\n" "</opencv_storage>\n"; const char* liveCaptureHelp = "When the live video from camera is used as input, the following hot-keys may be used:\n" " <ESC>, 'q' - quit the program\n" " 'g' - start capturing images\n" " 'u' - switch undistortion on/off\n"; static void help() { printf( "This is a camera calibration sample.\n" "Usage: calibration\n" " -w <board_width> # the number of inner corners per one of board dimension\n" " -h <board_height> # the number of inner corners per another board dimension\n" " [-pt <pattern>] # the type of pattern: chessboard or circles' grid\n" " [-n <number_of_frames>] # the number of frames to use for calibration\n" " # (if not specified, it will be set to the number\n" " # of board views actually available)\n" " [-d <delay>] # a minimum delay in ms between subsequent attempts to capture a next view\n" " # (used only for video capturing)\n" " [-s <squareSize>] # square size in some user-defined units (1 by default)\n" " [-o <out_camera_params>] # the output filename for intrinsic [and extrinsic] parameters\n" " [-op] # write detected feature points\n" " [-oe] # write extrinsic parameters\n" " [-zt] # assume zero tangential distortion\n" " [-a <aspectRatio>] # fix aspect ratio (fx/fy)\n" " [-p] # fix the principal point at the center\n" " [-v] # flip the captured images around the horizontal axis\n" " [-V] # use a video file, and not an image list, uses\n" " # [input_data] string for the video file name\n" " [-su] # show undistorted images after calibration\n" " [input_data] # input data, one of the following:\n" " # - text file with a list of the images of the board\n" " # the text file can be generated with imagelist_creator\n" " # - name of video file with a video of the board\n" " # if input_data not specified, a live view from the camera is used\n" "\n" ); printf("\n%s",usage); printf( "\n%s", liveCaptureHelp ); } enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 }; enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID }; static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints, const vector<vector<Point2f> >& imagePoints, const vector<Mat>& rvecs, const vector<Mat>& tvecs, const Mat& cameraMatrix, const Mat& distCoeffs, vector<float>& perViewErrors ) { vector<Point2f> imagePoints2; int i, totalPoints = 0; double totalErr = 0, err; perViewErrors.resize(objectPoints.size()); for( i = 0; i < (int)objectPoints.size(); i++ ) { projectPoints(Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2); err = norm(Mat(imagePoints[i]), Mat(imagePoints2), CV_L2); int n = (int)objectPoints[i].size(); perViewErrors[i] = (float)std::sqrt(err*err/n); totalErr += err*err; totalPoints += n; } return std::sqrt(totalErr/totalPoints); } static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners, Pattern patternType = CHESSBOARD) { corners.resize(0); switch(patternType) { case CHESSBOARD: case CIRCLES_GRID: for( int i = 0; i < boardSize.height; i++ ) for( int j = 0; j < boardSize.width; j++ ) corners.push_back(Point3f(float(j*squareSize), float(i*squareSize), 0)); break; case ASYMMETRIC_CIRCLES_GRID: for( int i = 0; i < boardSize.height; i++ ) for( int j = 0; j < boardSize.width; j++ ) corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0)); break; default: CV_Error(CV_StsBadArg, "Unknown pattern type\n"); } } static bool runCalibration( vector<vector<Point2f> > imagePoints, Size imageSize, Size boardSize, Pattern patternType, float squareSize, float aspectRatio, int flags, Mat& cameraMatrix, Mat& distCoeffs, vector<Mat>& rvecs, vector<Mat>& tvecs, vector<float>& reprojErrs, double& totalAvgErr) { cameraMatrix = Mat::eye(3, 3, CV_64F); if( flags & CV_CALIB_FIX_ASPECT_RATIO ) cameraMatrix.at<double>(0,0) = aspectRatio; distCoeffs = Mat::zeros(8, 1, CV_64F); vector<vector<Point3f> > objectPoints(1); calcChessboardCorners(boardSize, squareSize, objectPoints[0], patternType); objectPoints.resize(imagePoints.size(),objectPoints[0]); double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, flags|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5); ///*|CV_CALIB_FIX_K3*/|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5); printf("RMS error reported by calibrateCamera: %g\n", rms); bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs); totalAvgErr = computeReprojectionErrors(objectPoints, imagePoints, rvecs, tvecs, cameraMatrix, distCoeffs, reprojErrs); return ok; } static void saveCameraParams( const string& filename, Size imageSize, Size boardSize, float squareSize, float aspectRatio, int flags, const Mat& cameraMatrix, const Mat& distCoeffs, const vector<Mat>& rvecs, const vector<Mat>& tvecs, const vector<float>& reprojErrs, const vector<vector<Point2f> >& imagePoints, double totalAvgErr ) { FileStorage fs( filename, FileStorage::WRITE ); time_t tt; time( &tt ); struct tm *t2 = localtime( &tt ); char buf[1024]; strftime( buf, sizeof(buf)-1, "%c", t2 ); fs << "calibration_time" << buf; if( !rvecs.empty() || !reprojErrs.empty() ) fs << "nframes" << (int)std::max(rvecs.size(), reprojErrs.size()); fs << "image_width" << imageSize.width; fs << "image_height" << imageSize.height; fs << "board_width" << boardSize.width; fs << "board_height" << boardSize.height; fs << "square_size" << squareSize; if( flags & CV_CALIB_FIX_ASPECT_RATIO ) fs << "aspectRatio" << aspectRatio; if( flags != 0 ) { sprintf( buf, "flags: %s%s%s%s", flags & CV_CALIB_USE_INTRINSIC_GUESS ? "+use_intrinsic_guess" : "", flags & CV_CALIB_FIX_ASPECT_RATIO ? "+fix_aspectRatio" : "", flags & CV_CALIB_FIX_PRINCIPAL_POINT ? "+fix_principal_point" : "", flags & CV_CALIB_ZERO_TANGENT_DIST ? "+zero_tangent_dist" : "" ); cvWriteComment( *fs, buf, 0 ); } fs << "flags" << flags; fs << "camera_matrix" << cameraMatrix; fs << "distortion_coefficients" << distCoeffs; fs << "avg_reprojection_error" << totalAvgErr; if( !reprojErrs.empty() ) fs << "per_view_reprojection_errors" << Mat(reprojErrs); if( !rvecs.empty() && !tvecs.empty() ) { CV_Assert(rvecs[0].type() == tvecs[0].type()); Mat bigmat((int)rvecs.size(), 6, rvecs[0].type()); for( int i = 0; i < (int)rvecs.size(); i++ ) { Mat r = bigmat(Range(i, i+1), Range(0,3)); Mat t = bigmat(Range(i, i+1), Range(3,6)); CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1); CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1); //*.t() is MatExpr (not Mat) so we can use assignment operator r = rvecs[i].t(); t = tvecs[i].t(); } cvWriteComment( *fs, "a set of 6-tuples (rotation vector + translation vector) for each view", 0 ); fs << "extrinsic_parameters" << bigmat; } if( !imagePoints.empty() ) { Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2); for( int i = 0; i < (int)imagePoints.size(); i++ ) { Mat r = imagePtMat.row(i).reshape(2, imagePtMat.cols); Mat imgpti(imagePoints[i]); imgpti.copyTo(r); } fs << "image_points" << imagePtMat; } } static bool readStringList( const string& filename, vector<string>& l ) { l.resize(0); FileStorage fs(filename, FileStorage::READ); if( !fs.isOpened() ) return false; FileNode n = fs.getFirstTopLevelNode(); if( n.type() != FileNode::SEQ ) return false; FileNodeIterator it = n.begin(), it_end = n.end(); for( ; it != it_end; ++it ) l.push_back((string)*it); return true; } static bool runAndSave(const string& outputFilename, const vector<vector<Point2f> >& imagePoints, Size imageSize, Size boardSize, Pattern patternType, float squareSize, float aspectRatio, int flags, Mat& cameraMatrix, Mat& distCoeffs, bool writeExtrinsics, bool writePoints ) { vector<Mat> rvecs, tvecs; vector<float> reprojErrs; double totalAvgErr = 0; bool ok = runCalibration(imagePoints, imageSize, boardSize, patternType, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, totalAvgErr); printf("%s. avg reprojection error = %.2f\n", ok ? "Calibration succeeded" : "Calibration failed", totalAvgErr); if( ok ) saveCameraParams( outputFilename, imageSize, boardSize, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, writeExtrinsics ? rvecs : vector<Mat>(), writeExtrinsics ? tvecs : vector<Mat>(), writeExtrinsics ? reprojErrs : vector<float>(), writePoints ? imagePoints : vector<vector<Point2f> >(), totalAvgErr ); return ok; } int main( int argc, char** argv ) { Size boardSize, imageSize; float squareSize = 1.f, aspectRatio = 1.f; Mat cameraMatrix, distCoeffs; const char* outputFilename = "out_camera_data.yml"; const char* inputFilename = 0; int i, nframes = 10; bool writeExtrinsics = false, writePoints = false; bool undistortImage = false; int flags = 0; VideoCapture capture; bool flipVertical = false; bool showUndistorted = false; bool videofile = false; int delay = 1000; clock_t prevTimestamp = 0; int mode = DETECTION; int cameraId = 0; vector<vector<Point2f> > imagePoints; vector<string> imageList; Pattern pattern = CHESSBOARD; if( argc < 2 ) { help(); return 0; } for( i = 1; i < argc; i++ ) { const char* s = argv[i]; if( strcmp( s, "-w" ) == 0 ) { if( sscanf( argv[++i], "%u", &boardSize.width ) != 1 || boardSize.width <= 0 ) return fprintf( stderr, "Invalid board width\n" ), -1; } else if( strcmp( s, "-h" ) == 0 ) { if( sscanf( argv[++i], "%u", &boardSize.height ) != 1 || boardSize.height <= 0 ) return fprintf( stderr, "Invalid board height\n" ), -1; } else if( strcmp( s, "-pt" ) == 0 ) { i++; if( !strcmp( argv[i], "circles" ) ) pattern = CIRCLES_GRID; else if( !strcmp( argv[i], "acircles" ) ) pattern = ASYMMETRIC_CIRCLES_GRID; else if( !strcmp( argv[i], "chessboard" ) ) pattern = CHESSBOARD; else return fprintf( stderr, "Invalid pattern type: must be chessboard or circles\n" ), -1; } else if( strcmp( s, "-s" ) == 0 ) { if( sscanf( argv[++i], "%f", &squareSize ) != 1 || squareSize <= 0 ) return fprintf( stderr, "Invalid board square width\n" ), -1; } else if( strcmp( s, "-n" ) == 0 ) { if( sscanf( argv[++i], "%u", &nframes ) != 1 || nframes <= 3 ) return printf("Invalid number of images\n" ), -1; } else if( strcmp( s, "-a" ) == 0 ) { if( sscanf( argv[++i], "%f", &aspectRatio ) != 1 || aspectRatio <= 0 ) return printf("Invalid aspect ratio\n" ), -1; flags |= CV_CALIB_FIX_ASPECT_RATIO; } else if( strcmp( s, "-d" ) == 0 ) { if( sscanf( argv[++i], "%u", &delay ) != 1 || delay <= 0 ) return printf("Invalid delay\n" ), -1; } else if( strcmp( s, "-op" ) == 0 ) { writePoints = true; } else if( strcmp( s, "-oe" ) == 0 ) { writeExtrinsics = true; } else if( strcmp( s, "-zt" ) == 0 ) { flags |= CV_CALIB_ZERO_TANGENT_DIST; } else if( strcmp( s, "-p" ) == 0 ) { flags |= CV_CALIB_FIX_PRINCIPAL_POINT; } else if( strcmp( s, "-v" ) == 0 ) { flipVertical = true; } else if( strcmp( s, "-V" ) == 0 ) { videofile = true; } else if( strcmp( s, "-o" ) == 0 ) { outputFilename = argv[++i]; } else if( strcmp( s, "-su" ) == 0 ) { showUndistorted = true; } else if( s[0] != '-' ) { if( isdigit(s[0]) ) sscanf(s, "%d", &cameraId); else inputFilename = s; } else return fprintf( stderr, "Unknown option %s", s ), -1; } if( inputFilename ) { if( !videofile && readStringList(inputFilename, imageList) ) mode = CAPTURING; else capture.open(inputFilename); } else capture.open(cameraId); if( !capture.isOpened() && imageList.empty() ) return fprintf( stderr, "Could not initialize video (%d) capture\n",cameraId ), -2; if( !imageList.empty() ) nframes = (int)imageList.size(); if( capture.isOpened() ) printf( "%s", liveCaptureHelp ); namedWindow( "Image View", 1 ); for(i = 0;;i++) { Mat view, viewGray; bool blink = false; if( capture.isOpened() ) { Mat view0; capture >> view0; view0.copyTo(view); } else if( i < (int)imageList.size() ) view = imread(imageList[i], 1); if(!view.data) { if( imagePoints.size() > 0 ) runAndSave(outputFilename, imagePoints, imageSize, boardSize, pattern, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, writeExtrinsics, writePoints); break; } imageSize = view.size(); if( flipVertical ) flip( view, view, 0 ); vector<Point2f> pointbuf; cvtColor(view, viewGray, COLOR_BGR2GRAY); bool found; switch( pattern ) { case CHESSBOARD: found = findChessboardCorners( view, boardSize, pointbuf, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FAST_CHECK | CV_CALIB_CB_NORMALIZE_IMAGE); break; case CIRCLES_GRID: found = findCirclesGrid( view, boardSize, pointbuf ); break; case ASYMMETRIC_CIRCLES_GRID: found = findCirclesGrid( view, boardSize, pointbuf, CALIB_CB_ASYMMETRIC_GRID ); break; default: return fprintf( stderr, "Unknown pattern type\n" ), -1; } // improve the found corners' coordinate accuracy if( pattern == CHESSBOARD && found) cornerSubPix( viewGray, pointbuf, Size(11,11), Size(-1,-1), TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 )); if( mode == CAPTURING && found && (!capture.isOpened() || clock() - prevTimestamp > delay*1e-3*CLOCKS_PER_SEC) ) { imagePoints.push_back(pointbuf); prevTimestamp = clock(); blink = capture.isOpened(); } if(found) drawChessboardCorners( view, boardSize, Mat(pointbuf), found ); string msg = mode == CAPTURING ? "100/100" : mode == CALIBRATED ? "Calibrated" : "Press 'g' to start"; int baseLine = 0; Size textSize = getTextSize(msg, 1, 1, 1, &baseLine); Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10); if( mode == CAPTURING ) { if(undistortImage) msg = format( "%d/%d Undist", (int)imagePoints.size(), nframes ); else msg = format( "%d/%d", (int)imagePoints.size(), nframes ); } putText( view, msg, textOrigin, 1, 1, mode != CALIBRATED ? Scalar(0,0,255) : Scalar(0,255,0)); if( blink ) bitwise_not(view, view); if( mode == CALIBRATED && undistortImage ) { Mat temp = view.clone(); undistort(temp, view, cameraMatrix, distCoeffs); } imshow("Image View", view); int key = 0xff & waitKey(capture.isOpened() ? 50 : 500); if( (key & 255) == 27 ) break; if( key == 'u' && mode == CALIBRATED ) undistortImage = !undistortImage; if( capture.isOpened() && key == 'g' ) { mode = CAPTURING; imagePoints.clear(); } if( mode == CAPTURING && imagePoints.size() >= (unsigned)nframes ) { if( runAndSave(outputFilename, imagePoints, imageSize, boardSize, pattern, squareSize, aspectRatio, flags, cameraMatrix, distCoeffs, writeExtrinsics, writePoints)) mode = CALIBRATED; else mode = DETECTION; if( !capture.isOpened() ) break; } } if( !capture.isOpened() && showUndistorted ) { Mat view, rview, map1, map2; initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(), getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0), imageSize, CV_16SC2, map1, map2); for( i = 0; i < (int)imageList.size(); i++ ) { view = imread(imageList[i], 1); if(!view.data) continue; //undistort( view, rview, cameraMatrix, distCoeffs, cameraMatrix ); remap(view, rview, map1, map2, INTER_LINEAR); imshow("Image View", rview); int c = 0xff & waitKey(); if( (c & 255) == 27 || c == 'q' || c == 'Q' ) break; } } return 0; }