#!/usr/bin/env python ''' Planar augmented reality ================== This sample shows an example of augmented reality overlay over a planar object tracked by PlaneTracker from plane_tracker.py. solvePnP funciton is used to estimate the tracked object location in 3d space. video: http://www.youtube.com/watch?v=pzVbhxx6aog Usage ----- plane_ar.py [<video source>] Keys: SPACE - pause video c - clear targets Select a textured planar object to track by drawing a box with a mouse. Use 'focal' slider to adjust to camera focal length for proper video augmentation. ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 import video import common from plane_tracker import PlaneTracker ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1], [0, 0.5, 2], [1, 0.5, 2]]) ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4), (1, 5), (2, 6), (3, 7), (4, 8), (5, 8), (6, 9), (7, 9), (8, 9)] class App: def __init__(self, src): self.cap = video.create_capture(src) self.frame = None self.paused = False self.tracker = PlaneTracker() cv2.namedWindow('plane') cv2.createTrackbar('focal', 'plane', 25, 50, common.nothing) self.rect_sel = common.RectSelector('plane', self.on_rect) def on_rect(self, rect): self.tracker.add_target(self.frame, rect) def run(self): while True: playing = not self.paused and not self.rect_sel.dragging if playing or self.frame is None: ret, frame = self.cap.read() if not ret: break self.frame = frame.copy() vis = self.frame.copy() if playing: tracked = self.tracker.track(self.frame) for tr in tracked: cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2) for (x, y) in np.int32(tr.p1): cv2.circle(vis, (x, y), 2, (255, 255, 255)) self.draw_overlay(vis, tr) self.rect_sel.draw(vis) cv2.imshow('plane', vis) ch = cv2.waitKey(1) & 0xFF if ch == ord(' '): self.paused = not self.paused if ch == ord('c'): self.tracker.clear() if ch == 27: break def draw_overlay(self, vis, tracked): x0, y0, x1, y1 = tracked.target.rect quad_3d = np.float32([[x0, y0, 0], [x1, y0, 0], [x1, y1, 0], [x0, y1, 0]]) fx = 0.5 + cv2.getTrackbarPos('focal', 'plane') / 50.0 h, w = vis.shape[:2] K = np.float64([[fx*w, 0, 0.5*(w-1)], [0, fx*w, 0.5*(h-1)], [0.0,0.0, 1.0]]) dist_coef = np.zeros(4) ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K, dist_coef) verts = ar_verts * [(x1-x0), (y1-y0), -(x1-x0)*0.3] + (x0, y0, 0) verts = cv2.projectPoints(verts, rvec, tvec, K, dist_coef)[0].reshape(-1, 2) for i, j in ar_edges: (x0, y0), (x1, y1) = verts[i], verts[j] cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2) if __name__ == '__main__': print(__doc__) import sys try: video_src = sys.argv[1] except: video_src = 0 App(video_src).run()