/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" //*F/////////////////////////////////////////////////////////////////////////////////////// // Name: icvImgToObs_DCT_8u32f_C1R // Purpose: The function takes as input an image and returns the sequnce of observations // to be used with an embedded HMM; Each observation is top-left block of DCT // coefficient matrix. // Context: // Parameters: img - pointer to the original image ROI // imgStep - full row width of the image in bytes // roi - width and height of ROI in pixels // obs - pointer to resultant observation vectors // dctSize - size of the block for which DCT is calculated // obsSize - size of top-left block of DCT coeffs matrix, which is treated // as observation. Each observation vector consists of // obsSize.width * obsSize.height floats. // The following conditions should be satisfied: // 0 < objSize.width <= dctSize.width, // 0 < objSize.height <= dctSize.height. // delta - dctBlocks are overlapped and this parameter specifies horizontal // and vertical shift. // Returns: // CV_NO_ERR or error code // Notes: // The algorithm is following: // 1. First, number of observation vectors per row and per column are calculated: // // Nx = floor((roi.width - dctSize.width + delta.width)/delta.width); // Ny = floor((roi.height - dctSize.height + delta.height)/delta.height); // // So, total number of observation vectors is Nx*Ny, and total size of // array obs must be >= Nx*Ny*obsSize.width*obsSize.height*sizeof(float). // 2. Observation vectors are calculated in the following loop // ( actual implementation may be different ), where // I[x1:x2,y1:y2] means block of pixels from source image with // x1 <= x < x2, y1 <= y < y2, // D[x1:x2,y1:y2] means sub matrix of DCT matrix D. // O[x,y] means observation vector that corresponds to position // (x*delta.width,y*delta.height) in the source image // ( all indices are counted from 0 ). // // for( y = 0; y < Ny; y++ ) // { // for( x = 0; x < Nx; x++ ) // { // D = DCT(I[x*delta.width : x*delta.width + dctSize.width, // y*delta.height : y*delta.height + dctSize.height]); // O[x,y] = D[0:obsSize.width, 0:obsSize.height]; // } // } //F*/ /*comment out the following line to make DCT be calculated in floating-point arithmetics*/ //#define _CV_INT_DCT /* for integer DCT only */ #define DCT_SCALE 15 #ifdef _CV_INT_DCT typedef int work_t; #define DESCALE CV_DESCALE #define SCALE(x) CV_FLT_TO_FIX((x),DCT_SCALE) #else typedef float work_t; #define DESCALE(x,n) (float)(x) #define SCALE(x) (float)(x) #endif /* calculate dct transform matrix */ static void icvCalcDCTMatrix( work_t * cfs, int n ); #define MAX_DCT_SIZE 32 static CvStatus CV_STDCALL icvImgToObs_DCT_8u32f_C1R( uchar * img, int imgStep, CvSize roi, float *obs, CvSize dctSize, CvSize obsSize, CvSize delta ) { /* dct transform matrices: horizontal and vertical */ work_t tab_x[MAX_DCT_SIZE * MAX_DCT_SIZE / 2 + 2]; work_t tab_y[MAX_DCT_SIZE * MAX_DCT_SIZE / 2 + 2]; /* temporary buffers for dct */ work_t temp0[MAX_DCT_SIZE * 4]; work_t temp1[MAX_DCT_SIZE * 4]; work_t *buffer = 0; work_t *buf_limit; double s; int y; int Nx, Ny; int n1 = dctSize.height, m1 = n1 / 2; int n2 = dctSize.width, m2 = n2 / 2; if( !img || !obs ) return CV_NULLPTR_ERR; if( roi.width <= 0 || roi.height <= 0 ) return CV_BADSIZE_ERR; if( delta.width <= 0 || delta.height <= 0 ) return CV_BADRANGE_ERR; if( obsSize.width <= 0 || dctSize.width < obsSize.width || obsSize.height <= 0 || dctSize.height < obsSize.height ) return CV_BADRANGE_ERR; if( dctSize.width > MAX_DCT_SIZE || dctSize.height > MAX_DCT_SIZE ) return CV_BADRANGE_ERR; Nx = (roi.width - dctSize.width + delta.width) / delta.width; Ny = (roi.height - dctSize.height + delta.height) / delta.height; if( Nx <= 0 || Ny <= 0 ) return CV_BADRANGE_ERR; buffer = (work_t *)cvAlloc( roi.width * obsSize.height * sizeof( buffer[0] )); if( !buffer ) return CV_OUTOFMEM_ERR; icvCalcDCTMatrix( tab_x, dctSize.width ); icvCalcDCTMatrix( tab_y, dctSize.height ); buf_limit = buffer + obsSize.height * roi.width; for( y = 0; y < Ny; y++, img += delta.height * imgStep ) { int x, i, j, k; work_t k0 = 0; /* do transfroms for each column. Calc only first obsSize.height DCT coefficients */ for( x = 0; x < roi.width; x++ ) { float is = 0; work_t *buf = buffer + x; work_t *tab = tab_y + 2; if( n1 & 1 ) { is = img[x + m1 * imgStep]; k0 = ((work_t) is) * tab[-1]; } /* first coefficient */ for( j = 0; j < m1; j++ ) { float t0 = img[x + j * imgStep]; float t1 = img[x + (n1 - 1 - j) * imgStep]; float t2 = t0 + t1; t0 -= t1; temp0[j] = (work_t) t2; is += t2; temp1[j] = (work_t) t0; } buf[0] = DESCALE( is * tab[-2], PASS1_SHIFT ); if( (buf += roi.width) >= buf_limit ) continue; /* other coefficients */ for( ;; ) { s = 0; for( k = 0; k < m1; k++ ) s += temp1[k] * tab[k]; buf[0] = DESCALE( s, PASS1_SHIFT ); if( (buf += roi.width) >= buf_limit ) break; tab += m1; s = 0; if( n1 & 1 ) { k0 = -k0; s = k0; } for( k = 0; k < m1; k++ ) s += temp0[k] * tab[k]; buf[0] = DESCALE( s, PASS1_SHIFT ); tab += m1; if( (buf += roi.width) >= buf_limit ) break; } } k0 = 0; /* do transforms for rows. */ for( x = 0; x + dctSize.width <= roi.width; x += delta.width ) { for( i = 0; i < obsSize.height; i++ ) { work_t *buf = buffer + x + roi.width * i; work_t *tab = tab_x + 2; float *obs_limit = obs + obsSize.width; s = 0; if( n2 & 1 ) { s = buf[m2]; k0 = (work_t) (s * tab[-1]); } /* first coefficient */ for( j = 0; j < m2; j++ ) { work_t t0 = buf[j]; work_t t1 = buf[n2 - 1 - j]; work_t t2 = t0 + t1; t0 -= t1; temp0[j] = (work_t) t2; s += t2; temp1[j] = (work_t) t0; } *obs++ = (float) DESCALE( s * tab[-2], PASS2_SHIFT ); if( obs == obs_limit ) continue; /* other coefficients */ for( ;; ) { s = 0; for( k = 0; k < m2; k++ ) s += temp1[k] * tab[k]; obs[0] = (float) DESCALE( s, PASS2_SHIFT ); if( ++obs == obs_limit ) break; tab += m2; s = 0; if( n2 & 1 ) { k0 = -k0; s = k0; } for( k = 0; k < m2; k++ ) s += temp0[k] * tab[k]; obs[0] = (float) DESCALE( s, PASS2_SHIFT ); tab += m2; if( ++obs == obs_limit ) break; } } } } cvFree( &buffer ); return CV_NO_ERR; } static CvStatus CV_STDCALL icvImgToObs_DCT_32f_C1R( float * img, int imgStep, CvSize roi, float *obs, CvSize dctSize, CvSize obsSize, CvSize delta ) { /* dct transform matrices: horizontal and vertical */ work_t tab_x[MAX_DCT_SIZE * MAX_DCT_SIZE / 2 + 2]; work_t tab_y[MAX_DCT_SIZE * MAX_DCT_SIZE / 2 + 2]; /* temporary buffers for dct */ work_t temp0[MAX_DCT_SIZE * 4]; work_t temp1[MAX_DCT_SIZE * 4]; work_t *buffer = 0; work_t *buf_limit; double s; int y; int Nx, Ny; int n1 = dctSize.height, m1 = n1 / 2; int n2 = dctSize.width, m2 = n2 / 2; if( !img || !obs ) return CV_NULLPTR_ERR; if( roi.width <= 0 || roi.height <= 0 ) return CV_BADSIZE_ERR; if( delta.width <= 0 || delta.height <= 0 ) return CV_BADRANGE_ERR; if( obsSize.width <= 0 || dctSize.width < obsSize.width || obsSize.height <= 0 || dctSize.height < obsSize.height ) return CV_BADRANGE_ERR; if( dctSize.width > MAX_DCT_SIZE || dctSize.height > MAX_DCT_SIZE ) return CV_BADRANGE_ERR; Nx = (roi.width - dctSize.width + delta.width) / delta.width; Ny = (roi.height - dctSize.height + delta.height) / delta.height; if( Nx <= 0 || Ny <= 0 ) return CV_BADRANGE_ERR; buffer = (work_t *)cvAlloc( roi.width * obsSize.height * sizeof( buffer[0] )); if( !buffer ) return CV_OUTOFMEM_ERR; icvCalcDCTMatrix( tab_x, dctSize.width ); icvCalcDCTMatrix( tab_y, dctSize.height ); buf_limit = buffer + obsSize.height * roi.width; imgStep /= sizeof(img[0]); for( y = 0; y < Ny; y++, img += delta.height * imgStep ) { int x, i, j, k; work_t k0 = 0; /* do transfroms for each column. Calc only first obsSize.height DCT coefficients */ for( x = 0; x < roi.width; x++ ) { float is = 0; work_t *buf = buffer + x; work_t *tab = tab_y + 2; if( n1 & 1 ) { is = img[x + m1 * imgStep]; k0 = ((work_t) is) * tab[-1]; } /* first coefficient */ for( j = 0; j < m1; j++ ) { float t0 = img[x + j * imgStep]; float t1 = img[x + (n1 - 1 - j) * imgStep]; float t2 = t0 + t1; t0 -= t1; temp0[j] = (work_t) t2; is += t2; temp1[j] = (work_t) t0; } buf[0] = DESCALE( is * tab[-2], PASS1_SHIFT ); if( (buf += roi.width) >= buf_limit ) continue; /* other coefficients */ for( ;; ) { s = 0; for( k = 0; k < m1; k++ ) s += temp1[k] * tab[k]; buf[0] = DESCALE( s, PASS1_SHIFT ); if( (buf += roi.width) >= buf_limit ) break; tab += m1; s = 0; if( n1 & 1 ) { k0 = -k0; s = k0; } for( k = 0; k < m1; k++ ) s += temp0[k] * tab[k]; buf[0] = DESCALE( s, PASS1_SHIFT ); tab += m1; if( (buf += roi.width) >= buf_limit ) break; } } k0 = 0; /* do transforms for rows. */ for( x = 0; x + dctSize.width <= roi.width; x += delta.width ) { for( i = 0; i < obsSize.height; i++ ) { work_t *buf = buffer + x + roi.width * i; work_t *tab = tab_x + 2; float *obs_limit = obs + obsSize.width; s = 0; if( n2 & 1 ) { s = buf[m2]; k0 = (work_t) (s * tab[-1]); } /* first coefficient */ for( j = 0; j < m2; j++ ) { work_t t0 = buf[j]; work_t t1 = buf[n2 - 1 - j]; work_t t2 = t0 + t1; t0 -= t1; temp0[j] = (work_t) t2; s += t2; temp1[j] = (work_t) t0; } *obs++ = (float) DESCALE( s * tab[-2], PASS2_SHIFT ); if( obs == obs_limit ) continue; /* other coefficients */ for( ;; ) { s = 0; for( k = 0; k < m2; k++ ) s += temp1[k] * tab[k]; obs[0] = (float) DESCALE( s, PASS2_SHIFT ); if( ++obs == obs_limit ) break; tab += m2; s = 0; if( n2 & 1 ) { k0 = -k0; s = k0; } for( k = 0; k < m2; k++ ) s += temp0[k] * tab[k]; obs[0] = (float) DESCALE( s, PASS2_SHIFT ); tab += m2; if( ++obs == obs_limit ) break; } } } } cvFree( &buffer ); return CV_NO_ERR; } static void icvCalcDCTMatrix( work_t * cfs, int n ) { static const double sqrt2 = 1.4142135623730950488016887242097; static const double pi = 3.1415926535897932384626433832795; static const double sincos[16 * 2] = { 1.00000000000000000, 0.00000000000000006, 0.70710678118654746, 0.70710678118654757, 0.49999999999999994, 0.86602540378443871, 0.38268343236508978, 0.92387953251128674, 0.30901699437494740, 0.95105651629515353, 0.25881904510252074, 0.96592582628906831, 0.22252093395631439, 0.97492791218182362, 0.19509032201612825, 0.98078528040323043, 0.17364817766693033, 0.98480775301220802, 0.15643446504023087, 0.98768834059513777, 0.14231483827328514, 0.98982144188093268, 0.13052619222005157, 0.99144486137381038, 0.12053668025532305, 0.99270887409805397, 0.11196447610330786, 0.99371220989324260, 0.10452846326765346, 0.99452189536827329, 0.09801714032956060, 0.99518472667219693, }; #define ROTATE( c, s, dc, ds ) \ { \ t = c*dc - s*ds; \ s = c*ds + s*dc; \ c = t; \ } #define WRITE2( j, a, b ) \ { \ cfs[j] = SCALE(a); \ cfs2[j] = SCALE(b); \ } double t, scale = 1. / sqrt( (double)n ); int i, j, m = n / 2; cfs[0] = SCALE( scale ); scale *= sqrt2; cfs[1] = SCALE( scale ); cfs += 2 - m; if( n > 1 ) { double a0, b0; double da0, db0; work_t *cfs2 = cfs + m * n; if( n <= 16 ) { da0 = a0 = sincos[2 * n - 1]; db0 = b0 = sincos[2 * n - 2]; } else { t = pi / (2 * n); da0 = a0 = cos( t ); db0 = b0 = sin( t ); } /* other rows */ for( i = 1; i <= m; i++ ) { double a = a0 * scale; double b = b0 * scale; double da = a0 * a0 - b0 * b0; double db = a0 * b0 + a0 * b0; cfs += m; cfs2 -= m; for( j = 0; j < m; j += 2 ) { WRITE2( j, a, b ); ROTATE( a, b, da, db ); if( j + 1 < m ) { WRITE2( j + 1, a, -b ); ROTATE( a, b, da, db ); } } ROTATE( a0, b0, da0, db0 ); } } #undef ROTATE #undef WRITE2 } CV_IMPL void cvImgToObs_DCT( const void* arr, float *obs, CvSize dctSize, CvSize obsSize, CvSize delta ) { CV_FUNCNAME( "cvImgToObs_DCT" ); __BEGIN__; CvMat stub, *mat = (CvMat*)arr; CV_CALL( mat = cvGetMat( arr, &stub )); switch( CV_MAT_TYPE( mat->type )) { case CV_8UC1: IPPI_CALL( icvImgToObs_DCT_8u32f_C1R( mat->data.ptr, mat->step, cvGetMatSize(mat), obs, dctSize, obsSize, delta )); break; case CV_32FC1: IPPI_CALL( icvImgToObs_DCT_32f_C1R( mat->data.fl, mat->step, cvGetMatSize(mat), obs, dctSize, obsSize, delta )); break; default: CV_ERROR( CV_StsUnsupportedFormat, "" ); } __END__; } /* End of file. */