
Karlsruhe Institute of Technology
Computer Graphics Group

Max-Gerd Retzlaff ∗ Emanuel Schrade † Tamás Szép ‡

Graphics Programming Lab, Winter Term 2015/2016
Assignment 5

Freestyle Project

Abstract

In this final assignment of our course, you can demonstrate your
graphics programming skills on a completely custom application.
This problem can be different from the topics covered in the pre-
vious assignments, but you are also free to build upon and extend
your existing solutions.

Deadlines/Timeline:

8.12.2015 Call for Proposals
15.12.2015 Topic mail deadline
18.12.2015 Topic finalization

5.1.2016 Draft proposals
12.1.2016 Final proposals

2.2.2016 Assignment upload deadline
9.2.2016 Presentation and evaluation

1 Overview

The goal of this assignment is the creative solution of a custom
problem, using the previously demonstrated graphics programming
techniques. For this reason, the assignment is organized in a dif-
ferent way than the previous ones. Instead of a strict and exact
specification for implementation and evaluation, we only provide
general guidelines for this task, and we leave the entire concept to
your choice.

Thanks to the completion of the preceding problems you already
have a basic knowledge about the OpenGL graphics pipeline. You
are also familiar with widely used techniques in terrain rendering,
volume visualization, basic material models (Phong shading) and
design concepts of interactive modeling applications. The assign-
ment consists of four main steps:

1. Initial concept

2. Qt and OpenGL implementation

3. Evaluation

4. Presentation

∗retzlaff@kit.edu
†schrade@kit.edu
‡tamas.szep@kit.edu

2 Concept

As a first step, you will need to write a short specification (about 1-2
pages length). The specification should define the problem and how
it can be solved using the graphics hardware. If you are going to
extend a previous assignment, you should clarify the improvements
compared to the existing solution.

We encourage you to search for literature references and tutorials
on your preferred technique. Presumably, you will find very useful
resources for your work, including theoretical background, opti-
mization hints and best practices.

You will need to get your plans accepted before you start the im-
plementation itself. The deadline for submitting your specification
is the 6th of January 2015 (via email). We will accept your spec-
ification if it has similar complexity to the previous assignments,
and the definition of the problem is clear enough. Every concept
should address a unique problem (we will not accept two concepts
on ocean rendering, for example).

The overall structure of the concept should be organized as follows:

1. Introduction. Summarize the motivation and goals of your
project.

2. Rendering techniques. Short description of the chosen prob-
lem, with references to the used literature or presentations re-
lated to the used rendering techniques.

3. Implementation. Outline how do you plan to implement your
methods in OpenGL and Qt. This is a very short summary.

2.1 Teams

You might have chosen a problem that you find too complex for
a single person, but you are still motivated to work on it. As a
specialty of this assignment, we allow you to seek partners and
work in a small team instead of individual assignment. In this case,
the length of the specification, and ideally the size of the problem
should grow linearly with the number of team members.

Please note that we do not accept any excuse regarding team-
management problems. We require you to work on independent
parts of your project, so if one person is late with an implementa-
tion detail, it should not block the progress of the team-mates.

Each team member will present her / his own work individually,
and must have a separate scoring table in the evaluation part of the
specification.



3 Presentation

As part of the grading, you should prepare a short presentation (no
longer than 10 minutes per person) to introduce your solution to
the other members of the course. Each implementation will be fun-
damentally different, therefore we feel it beneficial to share your
results and discuss your problems together. We will make no eval-
uation in the ATIS lab: until the 3rd of February 2015 you should
submit your solutions electronically and the presentation (including
the grading) will take place before the end of the semester (most
probably the same day).

The presentation itself is only a brief summary followed by a short
discussion. The structure of the presentation should roughly follow
the concept, but extended with demo(s) and results of your run-
ning application (an OpenGL 4.2 capable GPU will be provided
in the system used for the presentation). The presentation should
conclude with performance measurements, similarly to the recent
assignments.

4 Evaluation

Akin to the former assignments, you can receive 20 points in total,
in the following parts:

• 2 points: initial concept

• 15 points: implementation (distributed by you)

• 3 points: short presentation

The distribution of the 15 points will go to your custom problem.
You should propose a scoring table for your assignment as well, as
part of the initial concept. Using the previous assignments as guide-
lines, you should break down your implementation into smaller
steps and assign points for each step. We will use this scoring ta-
ble during the evaluation, so this assignment is the most flexible
one. However, we will correct unrealistic scoring tables before we
accept the specification.

5 Examples

Without limiting your possible applications, we summarize a few
potential freestyle projects:

5.1 Advanced post-processing effects

This is a large field of rendering techniques applied after the scene
has been already rasterized and the render targets contain all visible
surfaces. The main advantage of these methods is that they operate
on the full rendered image, therefore their computational cost does
not depend on the scene complexity. A good example for advanced
post-processing is the rendering of Depth of Field (DoF), which is
too expensive in a physically accurate way for current games.

http://http.developer.nvidia.com/GPUGems3/
gpugems3_ch28.html

http://dxp.korea.ac.kr/homewiki/images/f/f5/
PG-PointDof-submit.pdf

5.2 Realistic water rendering

http://madebyevan.com/webgl-water/

5.3 Parallax occlusion mapping

In nature, surfaces are almost never completely smooth, but real-
time models lack the necessary detail to capture fine details, like
bumps or small stones on the ground. Such rough phenomena is
usually modelled in a displacement texture, and sampled during
rendering to increase the detail on the surface. Parallax occlusion
mapping is a per-pixel displacement method, a very popular tech-
nique in current games, because it creates the illusion of displace-
ment without increasing the geometric complexity.

This technique is mostly used in terrain rendering, where the base
mesh is approximately planar.

http://sirkan.iit.bme.hu/˜szirmay/
egdisfinal3.pdf

5.4 3D tanks game

You are probably familiar with the classic “Tanks” or “Worms”
games, where multiple players are placed on a simple 2D terrain
and are allowed to fire at each other with various weapons. The
projectiles explode as they hit the ground, and create large craters
after them. An example implementation can be played on this link:

http://www.mathsisfun.com/games/tanks.html

As an option, you can use your existing terrain implementation as a
base of a 3D tanks game. You can create a randomly generated ter-
rain and scatter the models of the players over it. You can directly
use the 2D height-map during the gameplay, which is also base of
your terrain rendering technique: this is how you can detect colli-
sions with the projectile, and you can also create the craters easily
by reducing the height values in the map.

Be creative, but also try to put the main focus on graphics (since we
are a graphics programming course). You should model explosions
using animated particle systems, and creatively use your blended
fracture textures when rendering burnt craters. In your modelling
framework, you have already implemented multiple viewports; it
would be a good idea to have a split-screen multiplayer mode, as a
trivial application of the concept.

2

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html
http://dxp.korea.ac.kr/homewiki/images/f/f5/PG-PointDof-submit.pdf
http://dxp.korea.ac.kr/homewiki/images/f/f5/PG-PointDof-submit.pdf
http://madebyevan.com/webgl-water/
http://sirkan.iit.bme.hu/~szirmay/egdisfinal3.pdf
http://sirkan.iit.bme.hu/~szirmay/egdisfinal3.pdf
http://www.mathsisfun.com/games/tanks.html

