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Abstract

In this assignment we will learn how to implement two simple par-
ticle systems on the GPU. In the first simulation the particles do not
interact with each other. However, we will allow particles to be re-
moved and added to the system, hence we have to perform a stream
compaction that will remove the empty fields in the array. The sec-
ond assignment will then introduce local constraints that will affect
the movement of particles to simulate materials such as cloth.

1 Scientific Simulation

Particle systems are widely used to simulate natural phenomena like
smoke, fire, or water. In numerical simulation, we distinguish two
approaches that conceptually differ in how they handle the simula-
tion domain.

Lagrangian Approach The Lagrangian approach is based on the
discretization of the domain into a set of finite mass elements.
These particles are then allowed to move freely, or with respect
to defined rules, through the environment. Each particle is usually
described by its position and velocity. According to our needs, it
can also have any other quantity such as mass, temperature, or ra-
dius. Methods based on tracking particles over time and altering
their quantities according to the prescribed laws are called parti-
cle Systems. Since they directly track chunks of matter through
the space, particle systems can easily guarantee the conservation of
mass. On the other hand, handling of incompressibility (e.g., in the
simulation of fluids) might be more difficult to achieve.

Eulerian Approach Instead of simulating the phenomena using
chunks of matter, we can partition the domain into a set of small
symmetric cells: voxels. This approach is called Eulerian dis-
cretization and the main idea resides in allowing the matter to freely
move through the fixed grid, while tracing the simulated quantities.
In other words, we do not track the matter itself, but we simulate the
quantities at fixed positions in the domain. The discretization is in
the simplest case a regular Cartesian grid, however, more advanced
techniques often employ hierarchical or multi-resolution structures
to devote more computation and resolution to areas, where the
quantities change with higher frequency.

In this assignment we will use the Lagrangian approach simulating
a number of particles that do not interact with each other (first task),
and a system where the particles represent a cloth and interact with
their neighbors under some constraints (e.g., springs).

1.1 Verlet Integration

Having a system with the matter represented as particles, we want
to find out the position of each particle at an arbitrary time. As
long as the system is just moderately complicated, we cannot use
the closed form solutions and have to solve the equations numer-
ically. There are various approaches to numerical integration that
trade speed for quality. We will use a basic integration scheme
called Verlet integration.
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The Verlet velocity integration defines the new position x(t + ∆t)
and velocity v(t + ∆t) of a particle as:

x(t + ∆t) = x(t) + v(t)∆t +
1

2
a(t)∆t2

v(t + ∆t) = v(t) +
1

2
(a(t) + a(t + ∆t))∆t

The ∆t refers to a discrete time step that we take between two (cur-
rent and the new) simulation steps. a(t) refers to the acceleration
(i.e. first derivation of the velocity, second derivation of the posi-
tion) of the particle. As a thorough explanation of the underlying
motivation for using this integration scheme is beyond the scope of
this text, we refer you to other resources for more detailed descrip-
tions of the velocity Verlet integration.

1.2 Collision Detection

Since the particles can interact with the environment, e.g., collide
with a wall, we need to simulate these interactions. Consider for
instance a particle that is on one side of a wall at time t and on
the other side of the same wall at t + ∆t. Obviously, the veloc-
ity and acceleration of the particle have moved it through the wall.
We should try to detect such interactions and correct the position
of the particle accordingly. The most robust approach is to advance
only by ∆t that is collision free: there is no collision within the
whole system until ∆t. This is called continuous collision detec-
tion, which requires computing the time to the next collision for
each particle, and setting ∆t to the minimum of these values. In
systems with frequent collisions, this can make the time step very
small considerably slowing down the overall simulation.

We will take a simplified approach: we always advance by a con-
stant time step and correct for all previously occurring collisions in
a post process. Furthermore, we will only account for one colli-
sion per particle during a single time step. Therefore, given the old
and new particle position, x(t) and x(t + ∆t), we will search for
an intersection of the line between these two points and all the ob-
jects in the scene. If there is such an intersection, we should correct
the position of the particle using one of the approaches shown in
Figure 1.
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Figure 1: Left: We correct the position of the particle by pulling it
back where the collision occurred. Right: We take the new position
of the particle and project it onto the surface using the surface nor-
mal. The corrected velocity is in both cases computed by reflecting
the original velocity about the normal of the surface.



2 OpenGL Interoperation

During the simulation the particles will move along complex paths
in 3-dimensional space and collide with solid surfaces. To evaluate
the results, we need to provide real-time visual feedback about the
status of the simulation. OpenCL is suitable for general-purpose
programming, but we should employ one of the standard rendering
APIs to efficiently display 3D content on the screen.

This assignment demonstrates the basics of interoperability. We
will use OpenCL to update the state of the simulated world (particle
positions, velocities, etc.) and OpenGL to display them. In this
case, interoperability means that the same resources will be used
in multiple contexts. For example, triplets of floats in an OpenCL
buffer memory object can be reinterpreted as vertex positions by
OpenGL and displayed as a set of points in space.

OpenGL 2.0 defines buffer objects to hold rendering data. Based
on their usage, we can talk about vertex (VBO), pixel (PBO) and
texture (TBO) buffer objects. If we want an OpenCL kernel to be
able to modify the rendered geometry, we can create a buffer mem-
ory object from a VBO. As OpenCL and OpenGL coexist on the
same device in parallel, there can be conflicts when accessing the
shared resources. Therefore, before executing OpenCL kernels that
use the shared buffers, the OpenCL must place a lock these buffers.

As graphics programming using OpenGL is not covered by our
course, the implementation of the rendering part will be already
provided. To complete this assignment, you only need a basic un-
derstanding about the OpenGL context sharing.

3 Task 1: Simple Particle System

In this task we will implement a simple particle system that is driven
by a force field. As there are no interactions or collisions between
particles, the algorithm can be trivially parallelized using one thread
for each particle. We will use a 3D vector field to define the force
field within the simulation domain. This force field is loaded from
a file and uploaded to the GPU as a 3D texture. Using a 3D tex-
ture instead of a regular linear array has two advantages: first, we
can use a 3D vector to conveniently address the 3D texture, second,
the hardware can automatically perform a trilinear interpolation of
the eight nearest neighbors. In other words, if we address a point
within the texture that is not exactly one of the discrete positions
at which the texture samples the signal, we would have to load the
eight nearest neighbors and perform a trilinear interpolation manu-
ally. As this is a frequently used operation in rendering, GPUs have
a hardware implementation that significantly speeds up the trilinear
filtering.

3.1 Integration and Collision Detection

Each particle in our system is defined by a position, velocity, mass,
and remaining life. The first two characteristics are 3-component
vectors, whereas the mass and life are scalars, therefore, we can
pack all the particle data into two float4 arrays. This will enable
coalesced accesses and minimize the fillrate of the application.

In order to implement the Verlet integration and collision de-
tection, add your implementation in the Integrate kernel in
ParticleSystem.cl. This kernel should perform the follow-
ing steps:

• Load the particle data

• Perform the Verlet integration

• Check for collisions

• Kill old particles

• Possibly create new particles

• Store new particle data

3.1.1 Integration

In order to compute the acceleration of the particle, use the
gravitational acceleration and the acceleration defined by the
mass and the force at the current position of the particle.
For fetching the force from the 3D texture use the func-
tion read imagef(gForceField, sampler, lookUp),
where the gForceField and the sampler are parameters that
the kernel obtains and the lookUp is a float4 with the first xyz
components specifying the position and the w defines the mip level
(in our case it should be set to 0). These are already initialized to
perform the trilinear interpolation.

To be compatible with OpenCL 1.0 we use float4 vectors. Later
OpenCl specifications also support float3, so you can also use
them if you wish. Take care when performing arithmetic operations
on the float4 vectors that the last component is correctly set to
0.

3.1.2 Collision Detection

In order to compute the collision of particles with the scene ob-
jects, the kernel is also given a pointer to a global array with all
triangles in the scene. The triangles are stored as a triangle soup:
the triangles are stored in a consecutive chunk of memory, each tri-
angle is represented by three vertices, and each vertex is defined
as a float4 variable. Given the old and the new position of the
particle, you will construct a ray segment and try to intersect this
segment with each of these triangles. The straightforward solution
is to iterate over all vertices in the global memory, construct a trian-
gle, and call a function that will determine whether the ray segment
intersects the triangle.

Since all threads are iterating over the same values, there is a great
chance to use the local memory to cache the triangles. One of the
possible approaches is to read one vertex from the triangle soup by
each thread and store it in the local memory. Then all threads can it-
erate over the cached triangles in the local memory and perform the
collision test. If the number of triangles is higher than the number
of cached triangles, we have to repeat the process of loading and
testing the triangles multiple times. Notice, that if the number of
threads is not a multiple of 3 (the number of vertices for one trian-
gle), it can happen that we will not read the whole last triangle: the
threads might load only one or two vertices of the triangle. Unless
we want to take a special care of this case, we have to make sure
that the number of threads within a work-group is divisible by 3.

We provide you with a LineTriangleIntersection func-
tion, which computes an intersection of a line with a triangle. Your
task is to call this function for each triangle and find the closest in-
tersection, as the particle should collide with the nearest triangle.
Once you have it, you can adjust the new position and velocity of
the particle using one of the approaches illustrated in Figure 1.

3.1.3 Removing and Adding Particles

So far the problem could be very easily parallelized. In order to
introduce a little bit of complexity, we will allow the particles to
die and be reborn. After you account for the collisions, you should
decrease the life of the particle and check if it is less or equal to
zero. If yes, the particle should be removed. In order to mark the
particle as dead, use the gAlive buffer. Each record in this array



maps to exactly one particle (as in the case of the gPosLife and
gVelMass that store the position and the life, and the velocity and
the mass).

We will also allow new particles to be born. However, we do not
want to just regenerate the dead particles. We want the new parti-
cles to be born whenever some criterion is met. For instance, we
want to generate a new particle whenever another particle exceeds
some velocity. In such case, the fast particle will be virtually split
into two slower particles. Another example of generating newborns
can be when a particle strongly bounces into an obstacle. The cri-
terion for splitting the particles is left up to you. The important fact
is that each current particle can possibly generate a new particle.
Therefore, the arrays for holding the particle data are initialized to
have double size. If a particle k generates a new particle, the new-
born will be stored at position N + k, where N is the number of
particles. Figure 2 shows an example, where three particles die and
one particle is split into two.

N 2 N

Dead particles

1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Particle generating new particle New particle

Buffer of flags

Figure 2: An example of dead and newly created particles. The bot-
tom array shows the flags that should be written into the gAlive
array.

3.2 Stream Compaction

Up to now all the computation could have been concentrated in a
single kernel. This kernel can possibly produce new particles that
are in the second half of the array. In order to enable rendering and
further splitting of these particles, we need to compact the whole
array and get rid of the empty records. This step can be performed
using a parallel prefix sum. We will execute the PPS on the array
of flags gAlive that mark alive particles with 1 and the other with
zero. For each particle, the exclusive PPS will give us the total num-
ber of preceding living particles, which equals to the new position
of the particle in the compacted array. The process is demonstrated
in Figure 3.

In order to perform the stream compaction, you can use the PPS
that you implemented in the second assignment. Once you com-
pute the exclusive prefix sum you can compact the particles in an-
other kernel that loads the particle data from input array and us-
ing the gAlive and gRank write the data from gPosLifeIn
and gVelMassIn to the right positions of gPosLifeOut and
gVelMassOut. Since we do not write into all positions in the
output array, you should also execute a tiny kernel before the reor-
ganization to set the particle data to zero. Otherwise there might be
some old particle data that would be rendered.

3.3 Implementation Details

Notice that if the number of particles is greater than N (because the
number of added particles is higher than the number of removed)
we will only use the first N particles. This is a the usual way of
handling overflows within the context of GPUs: we have a given
budget of memory and we cannot extend it.

The skeleton of the assignment already performs most of the initial-
ization that you will need. It creates the force 3D texture, initializes
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Figure 3: The upper half of the figure shows an example of a par-
ticle data array, flag buffer signaling the status of the particle, and
an outcome of the exclusive parallel prefix sum, the rank array. The
lower part of the figure demonstrates how the rank and flag arrays
are used to compact the particles.

the particle data with some random positions, mass, and life. It
also prepares most of the device arrays that you will need. The
provided structure of kernels is not mandatory, so you can adjust
it to suit your implementation better. There are two scene files:
CubeJump.obj and CubeMonkey.obj that contain a box with
some additional geometry. You can select the actual scene that is
loaded in the constructor of the CAssignment4 class.

3.4 Visualization

A particle simulated by the OpenCL kernel is mapped to a single
vertex during OpenGL rendering. We render the particle system
by generating a sprite at the location of each particle. A sprite is
a quad, which always faces towards the camera. These sprites are
then rendered with additive blending to the screen, giving the im-
pression of small, point light sources (Figure 4).

Figure 4: Left: 192K particles are simulated in a force field, col-
liding with the surrounding geometry. The color coding shows the
dynamically born particles, generated using speed and height cri-
teria, at the top left corner of the image. Right: The force field is
visualized using line primitives as indicators.

To better understand the behavior of the particles, we can modulate
the color of the rendered sprites as a function of their mass, life, or
speed. This color coding can not only create interesting, colorful
visualizations, but can also help for debugging the code. For ex-
ample, coloring the particles based on their life will clearly show
newly generated particles in order to check their behavior. We do
not get into the details of visualization, but we explain the color-



coding mechanism of the vertex shader, particles.vert:

uniform samplerBuffer tboSampler ;

vo id main ( ) {

/ / g e t p o s i t i o n and l i f e ( bound as a v e r t e x b u f f e r )
vec4 v = vec4 (gl_Vertex ) ;

vec4 position = vec4 (v .xyz , 1 ) ;
f l o a t life = v .w ;

/ / g e t speed and mass ( bound as a t e x t u r e b u f f e r )
v = texelFetchBuffer (tboSampler , gl_VertexID ) ;

vec3 speed = v .xyz ;
f l o a t mass = v .w ;

/ / r e n d e r t h e p a r t i c l e s u s i n g t h e i r speed
gl_FrontColor = colorCode (length (speed ) ) ;

/ / [ . . . ]

gl_Position = gl_ModelViewProjectionMatrix ∗ position ;
}

This GLSL code (the standard shading language of OpenGL) gets
executed for each particle vertex. Each vertex will be replaced by
a point sprite later on, but the vertex shader will define the posi-
tion and color of the sprite. The gPosLife buffer is mapped as
a vertex buffer, so the shader can get the position and life of the
particles using the gl Vertex built-in variable. The gVelMass
buffer is used as a texture buffer (TBO), and fetched using the
texelFetchBuffer() command. This particular sample then
color codes the particle using the length of its speed vector. The last
line of the shader is a standard OpenGL transformation from world
space (where the particles are simulated) to another coordinate sys-
tem which OpenGL uses to project the particles to the screen. Feel
free to modify this shader to develop different meaningful visual-
izations of particle behavior.

The application also displays the force field as a set of colored lines.
These lines are scattered inside the volume, showing the direction
and magnitude of the forces at sample locations. You can toggle the
rendering of the force field during simulation by hitting ’f’.

Note that the application loads the collision geometry from a Wave-
front OBJ file. That means, you can experiment with different
collision objects by replacing the input file to a custom one (see
CAssignment4::CAssignment4()). As you increase the
number of triangles in the collision object, you will notice that
the performance of your simulation will drop dramatically. This
is because each particle is tested against each triangle in the scene.
Using a regular grid to spatially index the triangles based on their
position would make the search for collisions a lot more efficient.
You can think about such extensions for the free-style assignment.

3.5 Evaluation

The total amount of points reserved for this task is 10:

• Verlet velocity integration (2 points).

• Collision detection and handling of particles with triangles
(1.5 points) cached in the local memory (1.5 points).

• Aging of particles (1 point).

• Removing and adding particles (1 point).

• Correct stream compaction (3 points).

4 Task 2: Cloth Simulation

Real-time cloth simulation is a popular physically motivated sim-
ulation even in computer games. In this assignment we will learn
how to implement a basic cloth that uses a spring model to main-
tain the structure of the material and achieve the cloth-like behavior.
The springs (or constraints) are used to mimic the thread-like struc-
ture of the material. The model is easy to parallelize, however, the
resulting cloth behaves somewhat more elastic than most of the ma-
terials we know from the real life. Despite this drawback, it gained
popularity in game industry, since a basic cloth can be simulated
only with a few particles and springs.

Figure 5: Cloth simulation based on an explicit model defining the
structure via virtual springs between the particles.

The implementation of the cloth simulation requires the following
kernels:

• Integration kernel
• Constraints kernel
• Collision detection kernel
• Kernel for recomputing normals

Each of the kernels is detailed in the following sections. In our im-
plementation, we first execute the integration kernel and then enter
a loop that launches the constraints and collision detection kernel
several times. In the end we recompute the normals to achieve more
correct shading of the cloth. The suggested order and structure of
kernels is not mandatory. You can adjust the kernels (for instance
by concatenating some of them into a single one), number of it-
erations, how often you check for collisions, or the data that you
exchange in between kernels, if you can justify your decision by
meaningful arguments.

4.1 Integration

The first executed kernel is responsible for moving the particles ac-
cording to all external forces (e.g., gravity or wind). In contrast to
the previous task, we suggest using the Verlet position integration,
which allows handling the correction of the position due to con-
straints more conveniently. Since we want the cloth to behave like
it was attached on top to a bar, we should not trigger the computa-
tion for some of the particles in the very first row. This condition is
already provided in the code. Notice that the same condition should
also appear in the kernel for satisfying the constraints.

4.2 Satisfaction of Constraints

In order to simulate the cloth, we will use a set of constraints that
will act as springs between the particles. These springs will try
to preserve the initial spacing between particles, pushing them to-
gether if they are too far, and pulling them away if they are too
close. Figure 6 shows three different types of springs that we will
use. The structural constraints preserve the original adjacency,
shear constraints support the grid-like structure, and the bend con-
straints affect the stiffness of the cloth.



Figure 6: Different types of constraints (springs) that we use to
preserve the structure and cloth-like behavior.

The kernel for satisfying the constraints should be executed mul-
tiple times. During each iteration, we shift the particles a little in
order to relax the constraints to get closer to the state with minimum
energy. Since we cannot satisfy the constraints in one pass, we have
to take an iterative approach and trigger the satisfy constraints ker-
nel. Since all the constraints are evaluated in parallel, we must not
move one particle by more than d/2 during one iteration, where d
is the distance between two particles in the rest state. If we did, two
neighboring particles could possibly get attracted or repulsed too
much and the computation would ”blow up”. Therefore, we have to
weight the contribution of each appropriately, or clamp the change
in position to d/2.

Figure 7 depicts particles that act on a single particle in a horizontal
direction only. Since we do not want to offset the particle by more
than d/2, we need to conservatively add the forces; otherwise the
simulation might blow up. We included some default weights in
the code (WEIGHT ORTHO, WEIGHT DIAG, etc.), which you can
use to scale the contribution of each spring. Feel free to adjust
the values or to use a different approach. You can also adjust the
bending and shear constraints to change the stiffness of the cloth.

Figure 7: Neighboring particles acting on the center particle in the
horizontal direction only.

In order to efficiently implement the constraint satisfaction effi-
ciently, you should use the local memory in the same spirit as in
the non-separable image convolution assignment. In this case the
halo region will correspond to a two particles wide ring around the
processed tile.

4.3 Collision Detection

If you run the simulation at this point, the cloth should perform a
realistic waving motion according to the applied forces but keeping
the distances among particles by satisfying the cloth constraints.

The only step left to finish the simulation part of the task is to make
the cloth interact with the solid sphere placed under the bar. To
resolve particle collisions with a sphere, you can use the approach
illustrated in Figure 1, right depiction.

The collision detection with the sphere is simple: we have to de-
termine if any particle is closer to the sphere center than the sphere
radius. In case of a collision, we can push the particle to the surface
of the sphere using a vector in the radial direction. Note, that this
simple implementation of collision response will always keep the
particles on the surface of the sphere. Compared to the collision
detection of the first task, this approach is not very robust: it can
happen that the sphere travels through the cloth if you push it hard
enough. You can improve the detection akin to the previous task,
but it is not mandatory (to add it should be straightforward).

4.4 Evaluation

The total amount of points reserved for this task is 10:

• Verlet integration accounting for gravity and wind (use
sin(time) to modulate the strength of the wind) (3 points).

• Satisfaction of constraints (2 points for a solution without us-
ing local memory and additional 3 points when using local
memory for caching.)

• Collision detection with a sphere (2 points).

There are several options to enhance the simulation. One of them is
for instance ripping of the cloth: when the springs between particles
stretch too much, they break and are not considered anymore. You
can gain up to 2 extra points for implementing this behavior (or
anything else that has similar complexity as the cloth ripping).

Note: In the simulation you can move the sphere by moving the
mouse with the third button pressed.
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