CT

Karlsruhe Institute of Technology

/A

Max-Gerd Retzlaff *

Abstract

In this assignment we will focus on two fundamental data-parallel
algorithms that are often used as building blocks of more advanced
and complex applications. We will address the problems of parallel
reduction and parallel prefix sum (scan). These techniques can be
implemented in a very straightforward way, however, by optimizing
them further we can achieve up to an order of magnitude higher
performance.

We will also introduce theoretical measures, e.g. parallel work, that
can classify whether the parallel algorithm is optimal or not.

1 Performance Metrics of Parallel Algorithms

When evaluating the cost of sequential algorithms, we usually clas-
sify them using complexity metrics such as (asymptotically) opti-
mal algorithm, or (asymptotically) best known solution (not opti-
mal, yet the best we know). The analysis of complexity of parallel
algorithms has one additional aspect to be considered: the num-
ber of Processing Units (PU). Having p PUs we expect the paral-
lel algorithm to perform ideally p times faster than its sequential
counterpart, achieving a linear speedup. As this is often impossible
(some algorithms are proven to have worse complexity when eval-
uated in parallel), we need additional metrics to classify the quality
of parallel algorithms.

1.1 Parallel Time

Parallel time T (n, p), where n is the size of the input and p is the
number of processors, is the time elapsed from the beginning of
the algorithm till the moment when the last processor finishes the
computation. Instead of using seconds, we often express parallel
time by counting the number of parallel computation steps.

The speedup of a parallel over sequential implementation can be ex-
pressed as T'(n, 1) /T (n, p). As mentioned earlier, mostly we wish
to achieve linear speedup (p times faster performance), but in some
cases we can even experience super-linear speedup, e.g. when the
parallel algorithm better matches the hardware characteristics, or
the parallel computation takes greater advantage of caching.

1.2 Parallel Cost

Parallel cost C(n, p) can be expressed as the product of the parallel
time and the number of processors: C(n,p) = p x T(n,p). It
gives us the total number of operations as if all the processors were
working during the entire computation, which is not always the case
as some processors can idle.

We consider a parallel algorithm to be cost-optimal if the parallel
cost asymptotically equals to the sequential time. In other words,
the total sequential time is uniformly divided in between all proces-
sors, all taking approximately the same number of steps.

*retzlaff @kit.edu
Tschrade @kit.edu
ftamas.szep @kit.edu

Emanuel Schrade f

GPU Computing: Data-Parallel Algorithms

Tamés Szép *

1.3 Parallel Work

Parallel work W (n,p) measures the actual number of the exe-
cuted parallel operations. It can be also expressed as the sum of
the number of active processors over all parallel steps. In the con-
text of GPUs we can define parallel work more precisely: let p;
be the number of active processors in step ¢, then W(n,p) =
p1 + p2 + ...+ Dk, where k is the total number of parallel steps.

A work-optimal algorithm performs asymptotically as many oper-
ations as its sequential counterpart. Notice that parallel work does
not consider the possible idleness of individual processors. If an al-
gorithm is cost-optimal it will always also be work-optimal, but not
vice-versa. You will find examples of work-optimal (but not cost-
optimal) algorithms in the reduction and prefix sum assignments.

2 Performance Optimization

The previous assignment described the basic concepts of GPU
programming that were then demonstrated using two very simple
OpenCL tasks. In this assignment, we introduce further architec-
tural constraints that become important when tuning the perfor-
mance. Previously, we have briefly mentioned the concept of co-
alescing: aligned access to the global memory that enables partial
hiding of memory latency. We also talked about the very fast local
memory, allowing user-controlled caching of items. We will further
detail these features of modern GPUs and add a few more hints for
increasing the throughput, e.g. unrolling of loops.

There are parallel optimization strategies that can only justify them-
selves after a closer examination of the GPU memory architecture.
While the ultimate goal of parallel programming standards (e.g.
OpenCL) is to hide the hardware and provide the programmer with
a high level abstraction, there is a level of performance that can
only be achieved if the program fully exploits capabilities of the ar-
chitecture - and this holds especially for designing memory access
patterns.

2.1 Memory Coalescing and Warps

While changing the memory access pattern of a given parallel im-
plementation will not change its algorithmic complexity, it can re-
sult in significant speedup. The explanation is that the global mem-
ory on the GPU is really slow: on current hardware a single mem-
ory read or write operation can take as many as 400 clock cycles (a
typical logical or arithmetic operation consumes 2-8 cycles). Wait-
ing for the result of a memory operation appears as latency in the
execution. If the number of threads executed on the same mul-
tiprocessor is high enough, the hardware can effectively hide the
latency by scheduling other threads for execution while the cur-
rent thread waits for data from the memory. Therefore, minimizing
global memory accesses and maximizing the number of threads per
multiprocessor is crucial.

A key to minimize global memory accesses is memory coalescing.
The memory interface of each streaming multiprocessor can load
or store multiple data elements in parallel. On the CUDA architec-
ture it means that instead of executing a single load / store operation
per thread sequentially, the device memory is accessed via 32-, 64-,
or 128-byte memory transactions. By organizing your memory ac-
cesses to address items in 32-, 64-, or 128-byte segments of mem-
ory, the number of load/store transactions can reduce significantly.

4B

1288 T
A R

h. warp

(© (d)

Figure 1: Examples of memory coalescing when accessing aligned
blocks of memory by a half warp on the latest CUDA architecture.
(a): single 64-byte transaction. (b): unaligned access of an aligned
128-byte block still results in a single 128-byte transaction. (c):
sequential access of a 128-byte-aligned address with stride 2 results
in a single 128-byte transaction. (d): sequential access with stride
3 results in one 128-byte transaction and one 64-byte transaction.

CUDA scheduler executes threads in groups of 32 parallel threads,
called warps. You can imagine a warp as the smallest unit of paral-
lel execution on the device: each thread in a specific warp executes
the same instruction. If there was a divergence within a warp, e.g.
half of the threads fulfilled the conditions of an if clause, while the
other half continued to the else clause, all the threads within the
warp execute both of the branches in the code serially, disabling
those threads in the warp that are not within the corresponding
branch. Note, that threads in different warps can take arbitrary exe-
cution paths without loss in the instruction throughput. Optimizing
your code to get coherent execution based on warps is really simple
by using the local indexing of threads (get_local_id(0) in OpenCL
kernels): threads 0-31 belong to the first warp, threads 32-63 to the
second warp, etc.

Knowing about warps also helps the programmer to achieve coa-
lesced memory accesses. Ideally, the memory interface of a stream-
ing multiprocessor can perform global read/write operations for 16
threads (a half warp) in a single transaction, if all addresses in the
half warp fall into the same aligned segment of memory. This is
a 16x speedup compared to the worst case, where all accesses are
unaligned. Older architectures required these accesses to also be
sequentially aligned according to the thread indices in the warp.
The later CUDA capability 2.0 architecture can also coalesce shuf-
fled” access patterns inside aligned memory segments, see Figure[T]
for examples. For a more precise description, refer to the NVIDIA
OpenCL Best Practices Guide.

2.2 Local Memory

We have already seen a simple example in the previous assignment
(matrix rotation) where memory coalescing for both load and store
operations was inherently not possible without local data exchange
between threads. We have used a fast on-chip memory to provide an
intermediate storage, so the threads could perform coalesced write
to the global memory. Here we describe how the OpenCL local
memory maps to the CUDA architecture.

The local memory (or shared memory in CUDA terminology) is
very fast, in terms of speed on par with registers. However, access
patterns play an important role again, if we want to reach the maxi-
mum throughput. We should not think of local memory as a opaque
block of registers that could be randomly accessed, but rather as

4

cavoawaunno i

Figure 2: Without bank conflicts, the on-chip local memory can op-
erate at its maximum throughput. Examples without bank conflicts:
linear addressing aligned to the warps (a), linear addressing with
stride of 3 32-bit words (c), random permutation of addresses, each
using different banks (d). Interestingly (e) and (f) are also conflict-
free, as multiple threads read the same address through the same
bank, where a single memory broadcast is performed. Using lin-
ear addressing with stride of 2 words, however causes 2-way bank
conflicts (b). The image is courtesy of NVIDIA.

successive words of the same size, aligned to banks. The current
CUDA architecture (Kepler) partitions the local memory into 32
banks of 32-bit words. Older NVIDIA GPUs were using 16 banks.
A linear array placed in the local memory is organized into banks
in the following manner: the first word is placed in bank 0, second
word in bank 1, and so on up to the 32nd word that falls into the
last bank with number 31. The array is then wrapped and the 33rd
word will be placed in bank 0 again (below the first word).

An important feature is that each bank can process only a single
memory request at the time (except for the broadcast mechanism).
If every thread within the same warp accesses a word in different
banks, the local memory can operate at its maximum throughput.
However, if two or more threads in the same warp operate on dif-
ferent 32-bit words belonging to the same bank, their instructions
will be serialized, as the bank can perform one operation in the
same time. We call this situation bank conflict. In the worst case,
all 32 threads of the warp access the same bank, which results in
a 32-way conflict creating a potential performance bottleneck. An
exception to the previously described rule is when the threads read
from the same position in the bank. Then the hardware can perform
a single load operation and broadcasts the result among all partic-
ipating threads, without performance issues. Figure 2] illustrates
examples where bank conflicts occur and access patterns avoiding
such conflicts.

Now please refer back to the previous assignment for a brief opti-
mization. When loading elements to a tile in the local memory, the
following code snippet was used:

block[LID.y * get_local_size(0) + LID.x] = M[GID.y =
SizeX + GID.x];

When the work-items start writing data back to global memory,
a warp of 32 threads accesses the same column of the tile at
the same time. Note, that in the worst case - depending on

Afg [1[2]3]4 30[31| Do [1[2[3]4 30] 31
32 3334 35] 36 62| 63 PAD| 32 | 33 | 34] 35 61| 62
64 | 65| 66| 67| 68 94 95 63 |PAD| 64 | 65| 66 92| %3
96 |97 | 98| 99| 100] [126[127 94 | 95 [PAD| 96 | 97 123[124

wis @ O@O@ @G @O@C@ @Gy

Figure 3: By inserting a padding word after each 32 words, we
can completely eliminate bank conflicts from the kernel rotating a
matrix tile in the local memory. For simplicity, we use the local
indexing of a 32x32 tile to demonstrate the realigned positions of
the elements.

get_local_size - this can create a 32-way bank conflict if all
elements in the column lie in the same bank. The solution is to in-
troduce padding to the local data array: after each 32nd element we
insert an empty element. This enables rotating each row of the tile
without bank conflicts (also see Figure @):

int index = LID.y * get_local_size(0) + LID.x;
int offset = index / NUM_BANKS;
block[index + offset] = M[GID.y * SizeX + GID.x];

This is a practice you should generally follow when placing data
in the local memory. The padding of data in the memory always
depends on the number of banks. Unfortunately, this number can
be different on various architectures, so you always need to check
the specification or appropriate programming guide.

3 Task 1: Parallel Reduction

3.1 Algorithm Description

Parallel reduction is a data-parallel algorithm that is used to solve
the problem of reducing all elements in the input array into a sin-
gle value. An integral part of the problem is an associative binary
operation that defines how two input items are reduced into one. If
the operation is an addition, multiplication, or maximum value, the
parallel reduction of all elements results in a sum, product, or max-
imum of the entire input, respectively. Such computations are fre-
quently used in many applications, hence, the performance should
be tunned up to maximum.

Without loss of generality, we will use addition as the binary oper-
ation throughout this assignment. The sequential implementation is
straightforward: we need to visit all elements and reduce them into
a single value - the sum of the input array:

result = input[0];
for (unsigned int i = 1; i < n; i++)
result += input[i];

The code performs n — 1 operations computing the reduction se-
quentially with number of steps that scales linearly with the size
of the input. We provide you with a skeleton of the code that al-
ready contains the functionality of validating results and testing the
performance of individual GPU implementations.

3.2 Skills You Learn

In order to complete this task you will need to implement four ver-
sions of the parallel reduction.

e We start with a non-coalesced implementation using an in-
terleaved addressing to access elements that will be initially
placed in the global memory.

e Coalescing will be achieved via a different - sequential - ad-
dressing scheme.

e In order to benefit from the local memory, we will use kernel
decomposition and perform most of the reduction locally.

e We will also focus on further optimization, e.g. loop un-
rolling.

3.3 Parallel Implementation

In order to split the computation over several processing units, we
will use a tree-based reduction shown in Figure[d] Note, that if the
number of processing units equals the size of the input (which is
the case of Figure), we will be able to perform the reduction in
logarithmic time. In order to simplify the implementation we will
only consider arrays with sizes that equal to powers of 2. Handling
arrays with arbitrary size can be achieved via appropriate padding.

Tree-based Parallel reduction

Figure 4: Tree-based approach for parallel reduction.

3.3.1 Interleaved Addressing

In order to perform the tree-based reduction on a GPU, we can use
an interleaved addressing and always reduce two neighboring ele-
ments writing the result back into one of them, as shown in Figure[3]
As long as we do not need to keep the original GPU array, we can
perform the reduction in-place directly on the input array placed in
the global memory.

Notice that the result from one step is always used as the input for
the next step. This means that we need to synchronize work-items
over the whole NDRange, otherwise work-items from one group
could perform next step before the current step is finished by other
work groups (see Figure [f] for an example). There is no OpenCL
function for synchronizing the entire NDRange. However, we can
exploit the fact that kernels are executed in a non-overlapping con-
secutive order: next kernel can start only after the current one is
finished. Therefore, we can split the reduction into a number of
kernel calls. Each step from Figure 5] will be accomplished by ex-
ecuting a kernel, which will perform all operations required for the
step.

You should add the code of the reduction with interleaved address-
ing to the Reduction_InterleavedAddressing kernel in
Reduction.cl. Furthermore, you will have to implement the

CReductionTask::Reduction_InterleavedAddressing

method to call the kernel with appropriate parameters as many
times as necessary. On the high-level, this function should contain
a loop that always computes parameters for launching the kernel,
sets up correct arguments, and enqueues the kernel in the command
queue. There are several approaches for mapping threads (work-
items) to input elements, however, we recommend using only as

Interleaved Addressing

Thread N/2

Step 1 Thread 0 "
1]
e

/ V'V
L

a
0]

Step 2

Step 3

1] 7] 5 [19] 0[12] 3 [53]15]11] 7 [21]10] 3] 2]

Step 4

1] 75]19] 0 [12] 3]53]15]11] 7 [21]10] 3] 2]

Figure 5: Parallel reduction with interleaved addressing.

many threads as necessary in each step. Then you only need to
somehow compute the right offset and stride to accesses the two
elements that the thread reduces.

Since debugging options of GPUs are highly limited, we advise
you to proceed in smaller steps downloading the results back to the
CPU (clEnqueueReadBuffer) and verifying them after each
intermediate implementation step.

3.3.2 Sequential Addressing

The biggest drawback of the interleaved addressing is that the ac-
cesses to the global memory are not fully coalesced. The coalesc-
ing can be achieved quite easily just by using different - sequential
- addressing. In each step, the threads should read two consecutive
chunks of memory (first and second half of the elements), reduce
them, and write the results back again in a coalesced manner. Fig-
ure[7]demonstrates sequential addressing.

Use kernel Reduction_SequentialAddressing and the
corresponding function in CReductionTask to implement par-
allel reduction with coalesced accesses. Since this task is very sim-
ilar to the previous one, you can reuse most of the implementation
written for the interleaved addressing.

3.3.3 Kernel Decomposition

Once the accesses to the global memory are well-aligned, we can
continue optimizing the reduction further. There are two major
problems with the current implementation. First, each step of the
reduction requires a separate kernel launch to ensure that the re-
sults are written before they are read again. Since there is a con-
stant overhead of executing a single kernel, reductions of large ar-
rays will suffer from high execution overhead as many steps have
to be taken. The second issue resides in frequent accesses to the

Example of a RAW Hazard
Thread A

Step 3

1] 75 [19] 0 [12] 3 [RY15]11] 7 [21]10] 3] 2]
32 (instead oﬁ

1] 7] 5 [19] 0 [12] 3 [53]15]11] 7 [21]10] 3] 2]

Step 4

Figure 6: We need to enforce synchronization after each step, oth-
erwise RAW hazards may occur: thread A starts step 4 by reading
an incorrect value (32) because thread B did not finish step 3 yet.

Sequential Addressing

Step 1

Step 2

Step 3

Step 4

Figure 7: Parallel reduction with sequential addressing.

slow global memory: for each reduction operation we perform two
global reads and one global write.

Both described problems can be significantly suppressed by
caching data in the fast local memory and performing many small
reductions locally. This technique is also called kernel decomposi-
tion: instead of performing wide global steps, we bundle few con-
secutive steps together, split them horizontally, and compute several
local reductions. The global result is then computed on top of these
local reductions as shown in Figure For large arrays we may
need several levels to perform the reduction, however, the code of
the kernel will always be the same, so we only need to correctly set
the arguments for the kernel.

In order to succeed in implementing the decomposition, start with
a low number of elements, e.g. 512, and test your local reduction
first. You should load the data into local memory, perform the re-
duction, and write the result back to the global device memory. You
can improve the performance by computing the first reduction step
before storing the data in the local memory (this is not shown in
Figure EI): use 256 threads (work-items) for 512 elements , each
reading one element from the first half and second element from
the second half (using sequential addressing) of the element array.
Then we add them together and store the result in the local mem-
ory. Local reduction of the 256 elements in the local memory is
achieved by a single for loop. Each iteration should use only the
appropriate number of threads (use an i f statement and thread ID
to enable the computation only for some threads). Do not forget to
synchronize threads using a barrier after each operation that can
result in read-after-write (RAW) hazards. Once you have the local
reduction, use only one thread to write the result back to the global
array to position that corresponds to the ID of the current work-
group, so that the beginning of the array is consecutively filled with
results of individual local reductions.

Do no forget to allocate enough of local memory for each kernel.
If you follow the guidelines in the previous paragraph, you will
need storage for one element per each thread. Since we want to
run the reduction on large arrays, we still have to launch the kernel
multiple times; however, much fewer times than without using the
local memory.

If you carefully inspect Figure [8] you may notice that write-after-
read (WAR) hazards can occur. For example, consider the first it-
eration and the second local work group, which writes its result at
the second position of the input array. This position stores the input
for the first work group. If the second group happens to write the
result before the first group loads, it will overwrite the input values
for the first group. This can be easily avoided by using two arrays
instead of one, also called double-buffering. At each step, one ar-
ray will be used as the input for reading items and the other array

Global Memory

Local Memory

Local Reductions ~

Figure 8: Kernel decomposition bundles few reduction steps and
splits them horizontally into several local reductions. As the size of
an array that can be reduced within the local memory is limited, we
need to perform several consecutive reduction steps that exchange
data through the global memory.

as the output for writing the results. Notice that the input is never
changed (can be declared as const) and the WAR hazards can-
not occur. Since the output of one step is used as the input for the
next one, we will need to periodically swap the arrays after each
step. The technique somewhat reassembles table tennis: the data
jumps periodically between the arrays as the ball jumps from one
side to the other, therefore, many publications refer to it simply as
the ping-pong technique.

3.3.4 Further Optimizations

The last optimization that we address within this task is unrolling
of loops. 1f you correctly implemented the kernel decomposition,
you have a loop with a barrier somewhere in the kernel. The bar-
rier introduces an overhead since the threads need to synchronize,
hence, we would like to avoid it if possible. We can take advantage
of the fact the NVIDIA and AMD GPUs are SIMD architectures
(Single Instruction Multiple Data) that execute the same instruction
for several threads at the same time. In other words, the threads are
grouped into so called warps (32 threads, NVIDIA) or wavefronts
(16, 32, or 64 threads, depending on the actual AMD GPU) that are
executed simultaneously. Therefore, we do not need to synchronize
threads within a single warp/wavefront because they are executed
synchronously by definition.

Supposing that you used sequential addressing, you can omit the
barrier for the last few steps when only threads of one warp/wave-
front are reducing the remaining elements. The most efficient so-
lution in general is to pull these few iterations out of the loop and
hard-code them using constant strides. This leads to redundant and
not very clean code, therefore, unrolling of loops should be always
used as the very last optimization.

3.4 Evaluation

If you run the program with all kernels correctly implemented, you
should get an output similar to the following

Testing performance of task interleavedAddressing
average time: 5 ms, throughput: 3.35544 Gelem/s

Testing performance of task sequentialAddressing
average time: 1.19 ms, throughput: 14.0985 Gelem/s

Testing performance of task kernelDecomposition
average time: 1.47 ms, throughput: 11.4131 Gelem/s

Testing performance of task kernelDecompositionUnroll
average time: 0.83 ms, throughput: 20.2135 Gelem/s

DONE

GOLD TEST PASSED!

Reported time and speedup was measured on an Nvidia GTX 580
for 16 million elements. Task 3 adds two elements before storing
them in the local memory. It is interesting to note that the perfor-
mance of task 3 over the sequential addressing is inferior. This is
due to the improved architecture of recent GPUs (e.g Fermi and
newer), which minimizes the overhead of launching new kernels
and uses global memory cache (on older GPUs the kernel decompo-
sition brings higher speed-up). However, if we further optimize the
implementation by unrolling the loops and avoiding barriers (task
4), we gain better results.

The total amount of points reserved for the parallel reduction is 10
and they will be given for correctly implementing:

Interleaved addressing (2 points)

Sequential addressing (3 points)

e Kernel Decomposition (3 points)

Unrolling of loops + barrier avoidance (2 points)

If you succeed in optimizing the implementation further, beyond
the scope of the proposed techniques, you can gain up to 2 extra
points.

4 Task 2: Parallel Prefix Sum (Scan)

In order to complete this task you will need to implement two ver-
sions of the parallel prefix sum (PPS, sometimes also called scan):

e Naive parallel prefix sum

e Work-efficient parallel prefix sum

4.1 Algorithm Description

Similarly to parallel reduction, parallel prefix sum also belongs
to popular data-parallel algorithms. PPS is often used in prob-
lems such as stream compaction, sorting, Eulerian tours of a graph,
computation of cumulative distribution functions, etc. Given an
input array X = [xo,21,...2n—1] and an associative binary op-
eration @ an inclusive prefix sum computes an array of prefixes
[0, 20 B T1,T0 D X1 B T2,...,20 D ... D Tpn_1]. If the binary
operation is addition, the prefix of i*" element is simply a sum of
all preceding elements plus the i*" element if we want to have an
inclusive prefix sum. If we do not include the element itself we
talk about an exclusive prefix sum. Table [1| shows examples of an
inclusive and exclusive scan.

Input 3|11 2 5 7 0 9 3
Inclusive Scan 3114 |16 |21 | 28 | 28 | 37 | 40
Exclusive Scan | 0 3114 (16 | 21 | 28 | 28 | 37

Table 1: Examples of an inclusive and exclusive prefix sum.

4.1.1 Sequential Implementation

Sequential implementation is trivial: we iterate over all input el-
ements and cumulatively compute the prefixes. It can be imple-
mented as:

prefix = 0;

for (unsigned int i = 0; i < n; i++) {
prefix += input[i];
result[i] = prefix;

Similarly to the parallel reduction, the skeleton already contains all
necessary routines for allocating and initializing necessary OpenCL
variables. You only need to complete two kernels and functions that
call them as described in the following section.

4.2 Parallel Implementation

In some sense, PPS is very similar to the parallel reduction. We will
also perform the binary operation in a tree-like manner, though in a
more sophisticated way. All implementations required for complet-
ing this task should be added to Scan.cl and CScanTask.cpp
files. You can again consider only inputs with the width equal to a
power of 2.

4.2.1 Naive Prefix Sum

For the naive implementation we will use the sequential address-
ing. Figure[9]demonstrates the basic concept of the parallel prefix
sum. The kernel for the naive implementation is fairly simple: each
thread has to either read and add two values writing the result to
the appropriate position in the output array, or just propagate the
already computed prefix from the input to the output. Notice that in
each step, one item can be read by up to two threads, from which
one will also write the result into this item. In order to avoid WAR
hazards we again need to use the ping-pong technique, i.e. use two
arrays, one for storing the input and another for storing the results,
swapping them after each execution of the kernel.

Naive Inclusive Parallel Prefix Sum

Step 1

Step 2

Step 3

Step 4

Figure 9: An example of an inclusive naive parallel prefix sum.
Notice that the algorithm performs many more add operations than
the sequential version.

4.2.2 Work-efficient Prefix Sum

If we carefully analyze the work-efficiency of the naive algorithm,
we find out that it performs © (n log, n) addition operations, which
is log, n more than the linear sequential scan. Thus, the naive ver-
sion is obviously not work-efficient, which can significantly slow
down the computation, especially in the case of large arrays. Our
goal in this section is to use an algorithm that removes the logarith-
mic term and performs only ©(n) additions.

An algorithm that is optimal in terms of the number of addition op-
erations was presented by Blelloch in 1989. The main idea is to
perform the PPS in two hierarchical sweeps that manipulate data in
a tree-like manner. In the first up-sweep (also called reduce) phase
we traverse the virtual tree from leaves towards the root and com-
pute prefix sums only for some elements (i.e. the inner nodes of the
tree). In fact, we are computing parallel reduction with interleaved
addressing (see Figure[I0). The second phase, called down-sweep,
is responsible for adding and propagating the intermediate results

from inner nodes back to the leaves. In order to obtain correct re-
sult we need to overwrite the root (the result of the reduction phase)
with zero. Then we simple descend through the tree and compute
the values of the child nodes as:

e sum of the current node value and the former left child value
in the case of the right child,

e the current node value in the case of the left child.

The down-sweep is shown in Figure[TT]

Up-sweep
[3]14] 2[21[7] 7] 9[40] 6 [21] 4 [32] 8 [18] 1
Step 4
[3]14] 2]21[7] 7] 9 [40] 6 [21] 4 [32] 8 [18] 1
Step 3

2 4[32] 8 [18] 1
s

2]
'A'A'A'A’A'A’A

Step 2

Step 1

Figure 10: Up-sweep of the work-efficient PPS is in fact a reduction
with interleaved addressing.

Down-sweep Set the last element to 0

[3]14] 2]21] 7] 7] 9]40] 6 [21] 4 [32] 8 [18] 1

Step 1 Left Child

[3[14]2]21] 7] 7] 9]0] 6 [21] 4

[32] 8 [18] 1

Step 2

3114| 2 6121| 4
[3[14] [21]

Step 3

Step 4

PN PN P PN
(912 & Ja0] + [e1 ¢
X4 4 X 0 X XX

Figure 11: Down-sweep propagates intermediate results from the
inner nodes to the leaves.

In order to achieve highest possible throughput, we will require you
to decompose the computation and perform both sweeps in local
memory (the concept is similar to kernel decomposition in the par-
allel reduction task). The performance advantages should be clear,
we just need to sort out some minor optimization issues. We advise
you start with a small input array that fits into the local memory
(e.g. 512 elements). We will describe the extension for large arrays
shortly, but for a correct implementation, it is crucial to have the
local PPS working without any errors.

The kernel should begin by loading data from global to local mem-
ory. For a work-group of size N, we recommend to load and pro-
cess 2N elements to avoid poor thread utilization: if we used only
N elements, half of the threads would be inactive during the first
and last step of the up and down sweep, which is not good for the
performance. Obviously, you need to allocate local memory that
can contain 2N elements.

Having the data in the local memory, we can perform the up-sweep
within a single for loop. Then we explicitly write zero into the last

| Input Array |
| : : Poeee : | Local ppss
S] —— | S—
‘Sk_ﬁ
| 5 + Local PrefixSums | 5 ﬂG'rctup Sums |

PPS of Group Sums -
L

VT (T

| Full Prefix Sum |

Figure 12: PPS on large arrays performs several local PPS. The
last elements of each work-group is written into a separate array
over which we also perform a PPS that gives us the sum of all work-
groups on the left from a particular work-group. As the last step we
add these to the local prefix sums.

element of the local memory array and perform the down-sweep.
Do not forget to use barriers whenever necessary. If you carefully
inspect Figureﬂ;flyou will notice that we compute an exclusive PPS.
To compute the inclusive version, you just need to load the values
from the global memory, add them to results in the local memory
and write them back to the global device memory.

4.2.3 Avoiding Bank Conflicts

In the theoretical part of this assignment we talked about bank con-
flicts that occur if different threads from the same work-group ac-
cess (different) data in the same bank. This will definitely penalize
the performance so we should try to achieve a conflict-free address-
ing of the individual elements. Notice that as the stride between
two elements is getting bigger, more and more threads will access
the same bank as we proceed further. An easy solution is to reserve
a bit more local memory and add some padding. You can wrap the
address (offset) to the shared memory with a macro to conveniently
experiment with different paddings. A simple conflict-free access
can be achieved by adding 1 to the address for every multiple of the
number of banks. This will ensure that elements originally falling
into the same bank will be shifted to different banks. Use the pro-
filer to make sure you do not get any bank conflicts.

4.2.4 Extension for Large Arrays

In order to extend the work-efficient PPS to support large arrays, we
need to divide the input into a number of work-groups that perform
multiple local PPSs. Then we will take the last prefix of each work-
group and store it in an auxiliary array that is reserved only for
sums of individual work-groups. Subsequently, we can run a PPS
on these sums, which will add the sums of the preceding blocks
(blocks to the left). Notice that we can use the same PPS kernel,
we just need to use the auxiliary array with sums as the input. In
order to add the prefix of block sums to the array with results of
the local PPSs, you will have to implement a very simple kernel
(Scan WorkEfficientAdd) that only reads the right item and
adds it to the entire work-group. The extension for large arrays is
outlined in Figure[T2}

4.3 Evaluation

The total amount of points reserved for this task is 10:
e Naive PPS (2 points)
e Local work-efficient PPS (3 point)

o Conflict-free local memory access (2 point)

e Extension for large arrays (3 point)

	Performance Metrics of Parallel Algorithms
	Parallel Time
	Parallel Cost
	Parallel Work

	Performance Optimization
	Memory Coalescing and Warps
	Local Memory

	Task 1: Parallel Reduction
	Algorithm Description
	Skills You Learn
	Parallel Implementation
	Interleaved Addressing
	Sequential Addressing
	Kernel Decomposition
	Further Optimizations

	Evaluation

	Task 2: Parallel Prefix Sum (Scan)
	Algorithm Description
	Sequential Implementation

	Parallel Implementation
	Naïve Prefix Sum
	Work-efficient Prefix Sum
	Avoiding Bank Conflicts
	Extension for Large Arrays

	Evaluation

