
GPGPU: Introduction

Tamás Szép ∗ Lorenzo Tessari † Mahmoud Zeidan ‡

Abstract
Exploiting the vast horse power of contemporary GPUs for gen-
eral purpose applications has become a must for any real time or
interactive application nowadays. Current computer games use the
GPUs not only for rendering graphics, but also for collision detec-
tion, physics, or artificial intelligence. General purpose comput-
ing on GPUs (GPGPU) has also penetrated the field of scientific
computing enabling real time experience of large scale fluid simu-
lations, medical visualization, signal processing, etc. This lecture
introduces the concepts of programming graphics cards for non-
graphical applications, such as data sorting, image filtering (e.g.
de-noising, sharpening), or physically based simulations.

In this very first assignment you will briefly hear about the his-
tory of GPU computing and the motivations that drive us to harness
contemporary GPUs for general purpose computation. We will in-
troduce the architectural considerations and constraints of contem-
porary GPUs that have to be reflected in the algorithm, shall it be
efficient. You will also learn the basic concepts of the OpenCL pro-
gramming language wrapped in a simple framework that we will
be using during the course. All the knowledge you gain by reading
this paper will be then applied in two simple starting assignments.

1 Parallel Programming

In few cases, the transition between sequential and parallel environ-
ment can be trivial. Consider for example a simple particle simula-
tion, where particles are affected only by a gravity field. Sequential
algorithm would iterate over all particles at each time step and per-
form some kind of integration technique to compute the new posi-
tion (and velocity) of each particle. On a parallel architecture, we
can achieve the same by creating a number of threads, each han-
dling exactly one particle. If the parallel hardware contains enough
of processing units, all particles can be processed in a single parallel
step speeding up the simulation by a factor of N .

Unfortunately, not all problems can be parallelized in such a trivial
manner; even worse, the number of such problems is quite low. In
practical applications, we are facing much harder tasks that often re-
quire adjusting the algorithm or even reformulating of the problem.
Even though each problem can be essentially unique, there is a set
of well working paradigms that significantly increase the chances
of successfully parallelizing an algorithm without too much of frus-
tration and a risk of being fired. The road to victory consists of the
following steps:

1. Decompose the problem into a set of smaller tasks and iden-
tify whether each of them can be (easily) parallelized or not.
Whereas some parts can always be identified as embarrass-
ingly parallel, others may require serialization of processing
units and/or inter-thread communication. Finding the right
granularity already at the beginning can save a lot of effort in
the later development.

2. Estimate the trade-offs of parallelizing the inherently serial
parts of the algorithm. If such parts can be efficiently pro-
cessed on the CPU and the transfer between CPU and GPU is
only marginal (compared to the rest of the algorithm), there

∗tamas.szep@kit.edu
†lorenzo.tessari@kit.edu
‡mzeidan@ira.uka.de

is no need to parallelize these parts at any cost, as it may re-
sult in overall slow-down. On the other hand, even a slightly
slower GPU implementation can be preferable if transferring
data between RAM and GPU memory is costly.

3. Reformulate the problem if the solution does not seem to
fit the architecture well. This is of course not possible in all
cases, but using a different data layout, order of access, or
some preprocessing can tackle the problem more efficiently.
An example from the early GPGPU: architectures at the time
did not allow for efficient scatter operations, the key to success
at that time was to use a gather operation instead: collecting
the data from neighbors instead of distributing it to them.

4. Pick the right algorithm for your application. Given a prob-
lem we can typically find several algorithms accomplishing
the same using different approaches. It is necessary to com-
pare them in terms of storage and bandwidth requirements,
arithmetic intensity, and cost and step efficiency.

5. Profile and analyze your implementation. There are often
several options how we can optimize an initial implementa-
tion leading to significant speed up. Make sure that the ac-
cesses to the global device memory are aligned, kernels do not
waste registers, the transfer between CPU and GPU is mini-
mized, and the number of threads enables high occupancy.
These are only some basic concepts that we will (and some
others) introduce during individual assignments. When opti-
mizing you should always obey Amdahl’s Law and focus on
parts that consume most of the execution time, rather than
those that can be easily optimized.

1.1 History of Graphics Accelerators

Historical beginnings of modern graphics processing units date
back to mid eighties, when the Amiga Corporation released their
first computer featuring a device that would be nowadays recog-
nized as a full graphics accelerator. Prior to this turning point, all
the computers generated the graphics content on central processing
unit (CPU). Offloading the computation of graphics to a dedicated
device allowed higher specialization of the hardware and relieved
the computational requirements on the CPU. By 1995, replaceable
graphics cards with fixed-function accelerators surpassed expensive
general-purpose coprocessors, which have completely faded away
from the market in next few years (note the historical trend that was
completely opposite to contemporary evolution of GPUs).

Large number of manufacturers and increasing demand on
hardware-accelerated 3D graphics led to an establishment of
two Application Programming Interfaces (API) standards named
OpenGL and DirectX. Whereas the first did not restrict its usage
to a particular hardware and benefited from cutting-edge technolo-
gies of individual card series, the latter was usually one step be-
hind due to its strict marketing policy targeting only a subset of
vendors. Nevertheless, the difference quickly disappeared as Mi-
crosoft started working closely with GPU developers reaching a
widespread adoption of its DirectX 5.0 in gaming market.

After 2001, GPU manufacturers enhanced the accelerators by
adding support for programmable shading, allowing game devel-
opers and designers to adjust rendering algorithms to produce cus-
tomized results. GPUs were equipped with conditional statements,
loops, unordered accesses to the memory (gather and later scatter
operations), and became moderately programmable devices. Such
features enabled first attempts to exploit the graphics dedicated
hardware for computing non-graphical tasks. The true revolution
in the design of graphics cards came in 2007, when both market
leading vendors, NVIDIA and ATI, dismissed the idea of separate
specialized (vertex and fragment) shaders and replaced them with
a single set of unified processing units. Instead of processing ver-
tices and fragments at different units, the computation is nowadays
performed on one set of unified processors only. Furthermore, the
simplified architecture allows less complicated hardware design,
which can be manufactured with shorter and faster silicon technol-
ogy. Rendering of graphics is carried out with respect to the tradi-
tional graphics pipeline, where the GPU consecutively utilizes the
set of processing units for vertex operations, geometry processing,
fragment shading, and possibly some others. Thanks to the unified
design, porting general tasks is nowadays less restrictive. Note the
historical back-evolution: though highly advanced, powerful, and
much more mature, modern GPUs are in some sense conceptually
very similar to graphics accelerators manufactured before 1995.

1.2 Programming Languages and Environments

In order to write a GPU program, we first need to choose a suit-
able programming language. Besides others, there are three main-
stream shading languages (GLSL, HLSL, and Cg) enabling gen-
eral computing via mapping the algorithm to the traditional graph-
ics pipeline. Since the primary target is processing of graphics,
aka shading, programs written in these languages tightly follow the
graphics pipeline and require the programmer to handle the data as
vertices and fragments and store resources and results in buffers and
textures. To hide the architecture of the underlying hardware, vari-
ous research groups created languages for general computation on
GPUs and multi-core CPUs. Among the most popular belong the
Sh, Brook, and RapidMind, which yielded success mostly in other
areas than computer graphics. Nevertheless, none of them brought a
major breakthrough, mostly due to the inherent limitations imposed
from hardware restrictions.

The situation improved with the unified architecture of GPUs. Con-
temporary NVIDIA graphics cards automatically support CUDA
programming language, and the platform-independent OpenCL
closes the gap for the remaining vendors, supporting even hetero-
geneous computation on multiple central and graphics processing
units at the same time. Unlike the shading languages, both CUDA
and OpenCL enable true general purpose computation without re-
sorting to the traditional graphics pipeline. The syntax and semantic
rules are inherited from C with a few additional keywords to specify
different types of execution units and memories.

2 Computing Architecture of Modern GPUs

Before we introduce the OpenCL programming language that will
be used throughout this course, we will outline the architecture of
modern GPUs. You should then clearly understand how the ab-
stract language maps to the actual hardware. As most of the com-
puters in the lab are equipped with NVIDIA graphics cards, and
also because the NVIDIA’s Compute Unified Device Architecture
(CUDA) is more open to general computing, we will describe the
individual parts of the compute architecture in the context of con-
temporary NVIDIA GPUs from the Kepler microarchitecture.

Figure 1: Architecture of the GK110 (Kepler) streaming multipro-
cessor. Image courtesy of NVIDIA.

2.1 Streaming Design

Modern many-core GPUs consist of a several streaming multipro-
cessors (SM) that operate on large sets of streaming data. Each mul-
tiprocessor contains a number of streaming processors (SP). To per-
form the actual computation, individual SPs are equipped with sev-
eral arithmetic (ALU), and floating point (FPU) units. The stream-
ing multiprocessor is further provided with several load, store, and
special function units, which are used for loading and storing data,
and transcendental functions (e.g. sine, cosine, etc.) respectively.
In order to execute the code, each SM uses an instruction cache,
from which the warp scheduler and dispatch units fetch instructions
and match them with GPU threads to be executed on the SM. Data
can be stored either in registers, or in one of the very fast on-chip
memories, depending on the access and privacy restrictions. As the
capacity of the on-chip memory is highly limited, contemporary
GPUs have gigabytes of device memory. We will provide some
more detail about different storage options in Section 2.2. Figure 1
illustrates the architecture of a single streaming multiprocessor.

2.2 Memory Model

Memory model of contemporary NVIDIA graphics cards is shown
on Figure 2. Different memory spaces can be classified regarding
their degree of privacy. Each thread has a private local memory that
cannot be shared. For cooperation of threads within a block shared
memory can be used. Finally, an arbitrary exchange of data between
all threads can only be achieved via a transfer through the global
memory. Since different memory spaces have different parameters,
such as latency and capacity, we provide a brief description of each
in the following sections.

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Figure 2: Memory hierarchy of CUDA GPUs. Image courtesy
of NVIDIA.

2.2.1 Device Memory

The most prominent feature of the device memory is its high ca-
pacity, which in case of the newest GPUs reaches up to 12 GB. On
the other hand, all memory spaces reserved in the device memory
exhibit very high latency (400 to 600 clock cycles) prohibiting an
extensive usage, when high performance is requested. Individual
spaces are listed below.

• Global Memory is the most general space allowing both
reading and writing data. Accesses to the global memory
were prior to Fermi GPUs not cached. Despite the automatic
caching we should try to use well-defined addressing to coa-
lesce the accesses into a single transaction and minimize the
overall latency.

• Texture Memory, as its name suggests, is optimized for stor-
ing textures. This type of storage is a read-only memory capa-
ble of automatically performing bilinear and trilinear interpo-
lation of neighboring values (when floating point coordinates
are used for addressing). Data fetches from the memory are
cached, efficiently hiding the latency when multiple threads
access the same item.

• Constant Memory represents a specific part of the device
memory, which allows to store limited amount (64 KB) of
constant data (on CUDA called symbols). Similarly to the
texture memory, the accesses are cached but only reading is
allowed. Constant memory should be used for small variables
that are shared among all threads and do no require interpola-
tion.

• Local Memory space is automatically allocated during the
execution of kernels to provide the threads with storage for
local variables that do not fit into the registers. Since local
memory is not cached, the accesses are as expensive as ac-

cessing the global memory; however, the latency is partially
hidden by automatic coalescing.

All previously mentioned device spaces, except for the local mem-
ory, are allocated and initialized by the host. Threads can only
output the results of computation into the global memory; hence,
it is used for exchanging data between successive kernels. Tex-
ture memory should be used for read-only data with spatial locality,
whereas constant memory is suitable for common parameters and
static variables.

2.2.2 On-chip Memory

The counterpart of the device memory is the on-chip memory,
which manifests very low latency. Since it is placed directly on
the multiprocessor, its capacity is very low allowing only a limited
and specific usage, mostly caching and fast inter-thread communi-
cation.

• Registers are one of the most important features of the GPU
when it comes to complex algorithms. If your program re-
quires to many registers, it will hurt the performance since the
warp scheduler cannot schedule enough threads on the SM.
Multiprocessors on contemporary CUDA GPUs are equipped
with 65536 registers with zero latency.

• Shared Memory, sometimes also called parallel data cache,
or group-shared memory (in the context of DirectX), or lo-
cal memory (in OpenCL), serves as a low latency storage for
cooperation between threads. Its capacity of 16 KB (up to
48 KB on Fermi and Kepler) is split between all blocks run-
ning on the multiprocessor in pseudo-parallel. The memory
is composed of 32 banks that can be accessed simultaneously;
therefore, the threads must coordinate its accesses to avoid
conflicts and subsequent serialization. The lifetime of vari-
ables in shared memory equal to the lifetime of the block, so
any variables left in the memory after the block has been pro-
cessed are automatically discarded.

• Texture Cache hides the latency of accessing the texture
memory. The cache is optimized for 2D spatial locality, so
the highest performance is achieved when threads of the same
warp access neighboring addresses. The capacity of the cache
varies between 6 and 8 KB per multiprocessor, depending on
the graphics card.

• Constant Cache is similar to texture cache: it caches the data
read from the constant memory. The cache is shared by all
processing units within the SM and its capacity on CUDA
cards is 8 KB.

The only on-chip memory available to the programmer is the shared
memory. Usage of both caches and registers is managed automat-
ically by the memory manager, hiding any implementation details
from the programmer.

3 The OpenCL Platform

Programmers have often been challenged by the task of solving the
same problem on different architectures. Classical language stan-
dards, like ANSI C or C++, made life a lot easier: instead of us-
ing assembly instructions, the same high-level code could be com-
piled to any specific CPU ISA (Instruction Set Architecture). As
the hardware generations evolved and took different directions, the
goal to have ”one code to rule them all” became more and more dif-
ficult to reach. The growth of clock rates of CPUs is slowing down,
so the only way to continue the trend of Moore’s law remained to
increase the number of cores on the chip, thus making the execution

parallel. A classical single-threaded program uses only small part
of the available resources, forcing programmers to adopt new algo-
rithms from the world of distributed systems. Contemporary GPUs
are offering an efficient alternative for wide range of programming
problems via languages very similar to C and C++. As the differ-
ent platforms have different features for optimization, (out-of-order
execution, specialized memory for textures), the programmer needs
more and more specific knowledge about the hardware than before
for low-level optimization.

Open Computing Language (OpenCL) is a new standard in parallel
computing that targets simultaneous computation on heterogeneous
platforms. It has been proposed by Apple Inc. and developed in
joint cooperation with other leading companies in the field (Intel,
NVIDIA, AMD, IBM, Motorola, and many others). Since it is an
open standard (from 2008 maintained by the Khronos Group, which
also takes care of many other standards, like OpenGL, OpenGL ES,
COLLADA, OpenVG, WebGL, WebCL and OpenAL) it promises
cross-platform applicability and support of many hardware vendors.
By employing abstraction layers, an OpenCL application can be
mapped to various hardware and can take different execution paths
based on the available device capabilities. The programmer should
still be highly familiar with parallelization, but can exploit the fea-
tures of the underlying architecture by only knowing the fact that it
implements some parts of a standardized model. From now on, we
shall exclusively focus on GPGPU programming using OpenCL,
but we should always keep in mind that using the same abstraction,
unified parallelization is possible for heterogeneous, multi-CPU-
GPU systems as well.

Even though OpenCL strives to provide an abstract foundation for
general purpose computing, it still requires the programmer to fol-
low a set of paradigms, arising from the common features of various
architectures. These are described within the context of four ab-
stract models (Platform, Execution, Memory, and Programming
models) that OpenCL uses to hide hardware complexity.

3.1 Platform Model - Host and Devices

In the context of parallel programming, we need to distinguish be-
tween the hardware that performs the actual computation (device)
and the one that controls the data and execution flow (host). The
host is responsible for issuing routines and commands specified by
the programmer that are then outsourced to devices connected to the
host. A device may consist of multiple compute units that execute
instructions on several processing elements in parallel.

In our case, the host is always a CPU and the device a CUDA GPU
with compute units mapped to SMs, and processing elements rep-
resented by the individual scalar processors. OpenCL assumes that
both, the host and the device, are equipped with their own mem-
ory, referring to them as the host memory and device memory. The
responsibility for organizing data transfers between host and de-
vice memory is left on the host, which also calls appropriate func-
tions for allocating and deallocating device memory. In general,
you should always enumerate the available OpenCL devices to see,
whether there are any to perform the actual computation.

3.2 Execution Model

As outlined in the platform model, OpenCL programs consist of
two separate parts: kernels that execute on connected devices, and
host program that executes on the host and initiates the individual
kernels and memory transfers. A kernel is a single function that
is invoked on the device and executes on a set of data in parallel.
Think of a kernel as a block of code that simultaneously operates
on the streaming data. In order to build more complex algorithms,
we will often need multiple kernels and several other objects, such

as memory arrays. OpenCL encapsulates all such information that
is specific to the program by a context. The context includes the
following resources:

• Devices

• Kernels

• Program objects

• Memory objects

The context is created on the host using an OpenCL API call. In
order to manipulate resources (e.g. textures), we always have to
access them through the context. In addition to devices and ker-
nels, each parallel application also requires a program object that
contains the source code and the compiled binary of the kernels. In
order to execute the binary on the device, we need to add an exe-
cution event into a command queue. Adding individual commands
into a queue (instead of executing them right away) allows for a
non-blocking execution: after placing the command to the end of
the queue, the host program can continue running without waiting
for the command to be finished. Whenever the device is ready, it
checks the command queue and takes the next pending item for ex-
ecution. These items can be kernel execution commands, memory
commands, or synchronization commands.

A single instance of a kernel (i.e. kernel applied to a single item
in the data stream) is called work-item in OpenCL. All instances
then form a global space of work-items that is called NDRange (n-
dimensional range, where n is one, two, or three). Consider for
example a problem of simulating a set of particles in a force field:
the work-item in such case is simply an application of the force to a
single particle. In this case, the NDRange will be a one-dimensional
space containing applications of the force to all particles. We can
further say that the problem has high granularity: we can decom-
pose it into many small tasks that can be processed simultaneously.
To distinguish between individual work-items, each work-item in
the NDRange is assigned a global unique ID.

In more complicated situations, when we, for instance, need to ac-
count for forces between particles, it is beneficial to somehow clus-
ter them and process them in groups, solving the interactions locally
first. To partition the computation into groups, OpenCL organizes
work-items into work-groups that provide more coarse-grained de-
composition of the problem. Work-items that belong to one work-
group execute on processing units of one SM and are identified lo-
cally by a unique ID within the work-group. Furthermore, work-
items in a work-group can communicate and share data through the
local memory (shared memory in CUDA naming conventions). The
hierarchical execution model is shown in Figure 3.

3.3 Memory Model

The device memory available to OpenCL programs can be catego-
rized into four main memory regions. If you refer back to Sec-
tion 2.2, you will see that the OpenCL device memory maps to
the memory model of a CUDA with just a few minor differences.
Please note that the device memory in context of OpenCL refers
to all memory on the device, whereas CUDA programming guide
uses the term to distinguish the global device memory only (i.e. all
memory except for the on-chip storage).

• Global memory is accessible from host as well as from ker-
nels. Work-items can read from / write to any element of a
memory object in the global memory, but the order of exe-
cuting two operations on a single memory element within one
kernel is undefined. Synchronization on global memory can

Figure 3: Hierarchical execution model of OpenCL applications.
Image courtesy of NVIDIA.

be achieved by splitting the computation into multiple ker-
nels. (Or using atomic instruction extensions, see later in this
course).

• Constant memory is a special region of global memory that
remains constant during the execution of a kernel. This mem-
ory region can only be written by the host prior to the kernel
execution. Recognizing that some part of your data is constant
can greatly improve the performance of your code, since it al-
lows the device to cache data in the constant memory cache.

• Local memory is a special region that is specific to a work-
group. This region can be used to declare variables that are
shared between work-items of the same group. Besides this,
accessing local memory should be orders of magnitude faster
than accessing global memory. On the CUDA architecture,
local memory maps to shared memory of the SM.

• Private memory is represented by registers that hold the pri-
vate and temporary variables of a work-item. The content of
this region is only valid within the lifetime of the work-item.

As the device memory is independent of the host, the host program
can manipulate the device memory objects through the OpenCL
command queue. One way of interaction is to explicitly copy data
between device memory objects or between the device and host
memory. The host is also allowed to map regions of device mem-
ory to its own address space. Such memory access can be blocking
or non-blocking. A non-blocking command returns immediately
after a command was successfully enqueued, while the blocking
version stops the execution of host code until the copying operation
is performed and the host memory involved in the operation can be
reused.

3.4 Programming Model

OpenCL recognizes two different models of parallelism: data par-
allel and task parallel. In the scope of this course, we will always
talk about data parallel problems and algorithms. For details on
the task parallel programming model, please refer to the OpenCL
Specification.

3.4.1 Explicit Hierarchical Data Parallel Programming Model

In context of GPGPU development we will always talk about an
explicit hierarchical data parallel programming model. Data par-
allel means that the same instructions are applied to all data in the
stream. The programming model is hierarchical, since the work is
organized hierarchically: kernels are executed in work-items, which
are structured into work-groups, and finally into an NDRange. Fi-
nally, the model is also explicit, because we define the total number
of work-items that execute in parallel, and also how these work-
items are organized into work-groups.

3.4.2 Synchronization

In order to enable cooperation between work-items, we need syn-
chronization primitives. Synchronization within a work-group can
be achieved by placing a barrier. Until all work-items reach the
barrier, none of them is allowed to continue executing subsequent
instructions. This means that barriers should never be placed in con-
ditional branches, unless all work-items evaluate the condition with
the same boolean result. Violating this rule may result in locking
the execution on the device, which in case the of operating systems
without GPU driver timeout results in complete freeze of the sys-
tem.

Synchronization between work-items in different work-groups is
only possible via global memory (e.g. through atomics). Kernels
are guaranteed to finish in the order they were added into the com-
mand queue, so we can achieve synchronization on a global level
by splitting the computation into several kernels.

4 Task 1: First OpenCL Program

4.1 Skills You Learn

In the very first assignment you will learn the basics of OpenCL
programming. After completing the exercise, you will be able to:

• Set up a working OpenCL context

• Launch kernels on the GPU for a given number of threads

• Allocate memory on the GPU and transfer data between the
host and the device

4.2 Problem

Let us begin with a really simple problem. Suppose we are given
two large vectors of integers, A and B. Our task is to simply add
these two vectors together, using the elements of the second vector
in reverse order, see Figure 4. This problem is trivial to parallelize,
since the elements of the vectors can be added independently. We
can simply create as many threads as elements the vectors have,
then each thread will be responsible for adding two components,
one from each vector. If our machine would be able to run infinite
number of threads in parallel, our program would execute in one
step for any vector size.

In our exercises, we will use the NVIDIA CUDA SDK (which
also contains OpenCL headers and libraries), however, the code
you write will be fully portable to any compatible OpenCL
platform. The SDK is already installed on capable comput-
ers in the lab. For your personal use, you can download
it from NVIDIA’s website (https://developer.nvidia.
com/cuda-downloads). We have also prepared a startup so-
lution that contains the skeleton of the code you will have to com-
plete during the exercise. Before we start, let us quickly examine
the contents of the project file. For the maximum flexibility, we are
using the CMake build configuration system, so you will be able to
use your preferred IDE or command line compiler for the solution.
See the appendix for detailed build instructions.

Your startup kit is organized into two main parts (in subfolders).
The Common folder contains utility functions and base classes that
we will use throughout the assignments. Most of the code you will
not need to modify here, but in this first assignment you will need
to extend the code with some OpenCL initialization. The Common
folder contains the following files:

• IComputeTask.h, CommonDefs.h Base classes and
common definitions for our framework. No need to modify.

• CTimer.h/cpp You will often need to benchmark your so-
lution, where you will be able to use this timer class.

• CLUtil.h/cpp Utility functions for the management of
OpenCL objects. In this assignment you will extend this
class.

• CAssignmentBase.h/cpp Base class for all assign-
ments. In this assignment you will extend this class.

The folder Assignment1 contains files that are specific for this
assignment sheet. In general, an assignment is organized as follows:
you first inherit a new class from the CAssignmentBase base
class, and overload the DoCompute() method to provide your so-
lution. Each assignment contains multiple tasks (IComputeTask
interface), which are supposed to manage their own resources (such
as memory allocation and kernel compilation), compute and eval-
uate their results. While this may appear complicated first, this

allows our framework to run your solution with a lot of reusable
code. The Assignment1 folder contains the following files:

• main.cpp The entry point of your application. You will
work with the assignment class, and do not need to modify
this file.

• CAssignment1.h/cpp You will only need to change the
DoCompute() method to execute your tasks with different
parameters.

• CSimpleArraysTask.h/cpp The first task where you
have to complete the implementation of the OpenCL methods.

• CMatrixRotateTask.h/cpp The second task of the as-
signment

• CVectorAdd.cl, CMatrixRot.cl You will implement
your OpenCL kernels here.

4.3 Setting up the Device Context

The first step of every OpenCL application is setting up a work-
ing context using one of the available OpenCL devices. In
CAssignmentBase.cpp you will find two methods where you
should complete the global context initialization and cleanup:

boo l CAssignmentBase : : InitCLContext ()

vo id CAssignmentBase : : ReleaseCLContext ()

InitCLContext() will be called once when your application
starts up. Once all computations are finished, the framework will
call ReleaseCLContext(), where you should release all allo-
cated resources.

You should take the following steps to prepare everything to run
your first kernel:

1. Query the installed (supported) OpenCL platforms in your
system.

2. Enumarate the installed OpenCL devices supporting the se-
lected platform, and get a reference to one of them. You can
execute OpenCL kernels on this device using the context.

3. Create a new context on the device. This abstract object will
hold all the resources your application will create on the de-
vice, including kernels and memory objects.

4. Finally, create at least one command queue. This will al-
low the host to asynchronously communicate with selected
devices and issue commands to it.

All the initialization functions follow a similar pattern. If an error
occurs, an error code is returned (data type cl int). You should
always examine the returned value before proceeding, to make sure
that the previous call finished successfully. In order to perform
this check with minimum overhead, CLUtil.h contains code for
checking the errors and printing out error messages to the console.
This can be very helpful when debugging your code.

We have already provided you with code which performs the selec-
tion and enumeration of OpenCL devices. You will need to extend
InitCLContext() to create the context and command queue
(steps 3. and 4.).

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

A0 A1 A2 A3 Ak-1 B0 Bk-4 Bk-3 Bk-2 Bk-1

C0 C1 C2 C3 Ck-1

...

... ...

...

Figure 4: Element-wise addition of two vectors, where we use the
element of the second vector in reverse order.

cl_int clError ;
m_CLContext = clCreateContext (0 , 1 , &m_CLDevice , NULL ,

NULL , &clError) ;
V_RETURN_FALSE_CL (clError , ” F a i l e d t o c r e a t e OpenCL

c o n t e x t . ”) ;

m_CLCommandQueue = clCreateCommandQueue (m_CLContext ,
m_CLDevice , 0 , &clError) ;

V_RETURN_FALSE_CL (clError , ” F a i l e d t o c r e a t e t h e
command queue i n t h e c o n t e x t ”) ;

Now, when you run your application, the output will be something
like this:

OpenCL context initialized .
Running vector addition example . . .

Computing CPU reference result . . . DONE
Computing GPU result . . . DONE
INVALID RESULTS !

Press any key . . .

The main function already tries to test your vector addition exam-
ple, but of course it fails since we have not implemented it yet. This
is our next step, but first we should make sure that the code will
be neat and clean, thus, when allocating some resources, we also
have to release them. You can release the command queue and the
context in the ReleaseCLContext() method:

i f (m_CLCommandQueue != nullptr)
{
clReleaseCommandQueue (m_CLCommandQueue) ;
m_CLCommandQueue = nullptr ;

}

i f (m_CLContext != nullptr)
{
clReleaseContext (m_CLContext) ;
m_CLContext = nullptr ;

}

4.4 Kernel Implementation

In C++, the algorithm performing reversed addition would look like
this:

f o r (u n s i g n e d i n t i = 0 ; i < m_ArraySize ; i++)
{
m_hC [i] = m_hA [i] + m_hB [m_ArraySize − i − 1] ;

}

From now on, you will add code to the CSimpleArraysTask
class. Please note the m h prefix before the array names. Since we
have objects in the host but also in the device memory, it is a good
programming practice to denote pointers to these separate memory
spaces differently. Therefore, we recommend to use the following
naming convention: prefix m is for members, prefix g is for global
variables, h stands for host, and d for device.

/ / i n t e g e r a r r a y s i n t h e h o s t memory
i n t ∗m_hA , ∗m_hB , ∗m_hC ;

/ / i n t e g e r a r r a y s i n t h e d e v i c e memory
cl_mem m_dA , m_dB , m_dC ;

In order to implement the kernel, you should open the file named
VectorAdd.cl. This file will be loaded and compiled at run
time.

The entry point of the kernel will be very similar to a C function,
using some special OpenCL keywords. As an input parameter, the
kernel expects two integer arrays, and the number of elements in
the arrays. The result of the reversed addition will be written to the
third array.

__kernel vo id VecAdd (__global c o n s t i n t ∗ a , __global
c o n s t i n t ∗ b , __global i n t ∗ c , i n t numElements)

{}

The kernel prefix tells the OpenCL compiler that this is an en-
try function of a kernel that can be invoked from the host, using the
command queue. The global prefix is also important: it signals
that pointers a, b, and c refer to global memory.

After reading the introduction materials it should be clear that
the kernel will be executed in parallel for each item/thread. So
how will a given thread know, which elements of the arrays to
add? For this we have use the built-in indexing mechanism. The
get global id(i) built-in function returns the index of the
thread within the given NDRange dimension. Since our arrays are
one-dimensional, we only need to know the index in the first di-
mension.

i n t GID = get_global_id (0) ;
/ / an example o f u s i n g t h e i n d e x t o a c c e s s an i t em :
i n t myElement = a [GID] ;

Use the global work-item index to implement the addition of two
elements in the same way as shown in the C code at the beginning
of this section. Make sure that one thread only produces one com-
ponent of the resulting vector. As a programmer of the kernel, we
do not have any information about the actual number of threads that
will be executed, but we can assume that the number of threads is at
least equal to the number of elements. Therefore, you should also
check if the thread index is less than the total number of elements
in the array to avoid accessing data beyond the extent of the array.

4.5 Managing Data on the Device

If you examine the implementation of the overloaded function
InitResources() in the CSimpleArraysTask class, you
will see that it already allocates three arrays in the host memory and
fills two of them with random integers. Your task in this step is to
create their device counterparts, on which your kernel can perform
the parallel addition. You should allocate three memory objects,
then copy the input data from the host arrays to the device memory
objects.

The clCreateBuffer function can be used to allocate buffer
objects of a given size on the device. For optimization reasons, we
should also inform the device how do we want to use the allocated
memory later on. For example, memory which we only read can
be cached efficiently. You can allocate a buffer storing one of your
integer arrays using the following syntax:

cl_int clError ;
m_dPtr = clCreateBuffer(<Context>, [CL_MEM_READ_ONLY |

CL_MEM_WRITE_ONLY] , s i z e o f (cl_int) ∗ <ArraySize>,
NULL , &clError) ;

Extend the InitResources() function to allocate the two in-
put arrays m dA, m dB and the output array m dC on the device,
using the optimal memory access flags. CL MEM READ ONLY
means that the given buffer is a readable constant from the ker-
nel; CL MEM WRITE ONLY means that the kernel can write data to
the buffer, but cannot read from it. You should check for errors the
same way as before.

Having the buffers on the device created, the next step is to copy
the input data into them. Once the kernel is finished, you will also
need to copy the results from the output buffer. These memory
operations you are performed using the command queue object.

The ComputeGPU()method of your task class is still empty. This
method is called by the main function when your resources are al-
ready allocated. Add some code now to this part to copy data to
your buffer locations, using the clEnqueueWriteBuffer()
function. This can be used in different ways, we will now use a non-
blocking version: it means, that the request to copy data from a host
pointer to a device pointer is enqueued to the command queue, but
the host code continues executing subsequent commands and does
not wait for the device to perform the copy operation. We can use
the non-blocking call, since we do not use the device buffer from
the CPU, and we do not change or free data referenced by the host
pointer during execution. The code for copying:

clErr |= clEnqueueWriteBuffer (CommandQueue , m_dB ,
CL_FALSE , 0 , m_ArraySize ∗ s i z e o f (i n t) , m_hB , 0 ,
NULL , NULL) ;

V_RETURN_CL (clErr , ” E r r o r copy ing d a t a from h o s t t o
d e v i c e ! ”) ;

Refer to the OpenCL specification for more details on the function
call. The second parameter is the pointer to the target device mem-
ory object, the sixth parameter is a pointer to the source host mem-
ory location. The third parameter determines if the call is blocking
or non-blocking. After this the random numbers are already in the
GPU memory, ready to be processed.

Do not forget to release allocated device memory when it is no
longer needed. For this go to the ReleaseResources()
method of your class and free all allocated objects.
You can release a buffer on the device using the
clReleaseMemObject(<buffer>) function call1. Since
many modifications have been made, you should compile and run
your code to see if it executes properly.

4.6 Compile and Execute the Kernel

The kernel code is implemented and the necessary memory is
copied to the device, hence we can examine the results. Creating
executable kernel objects on the device requires three main steps:

1For this you can also find some utility macros in the code, such as
SAFE RELEASE MEMOBJECT()

1. Create an OpenCL program object from a source file.

2. Compile the program object on the device. This generates a
binary program in the memory of the device.

3. Create one or more kernel objects from the program.

First, add a reference to a program object and its single kernel to
your class members:

cl_program m_Program ;
cl_kernel m_Kernel ;

As these objects are also resources on the device, extend your exist-
ing code of InitResources() to load and compile the program
using the following code snippet:

size_t programSize = 0 ;
string programCode ;

/ / c r e a t e program o b j e c t (t h i s might c o n t a i n m u l t i p l e
k e r n e l e n t r y p o i n t s)

i f (!CLUtil : : LoadProgramSourceToMemory (” VectorAdd . c l ” ,
programCode))

{
r e t u r n f a l s e ;

}
m_Program = CLUtil : : BuildCLProgramFromMemory (Device ,

Context , programCode) ;
i f (m_Program == nullptr) r e t u r n f a l s e ;

/ / c r e a t e k e r n e l s from program
m_Kernel = clCreateKernel (m_Program , ”VecAdd” , &clError

) ;
V_RETURN_FALSE_CL (clError , ” F a i l e d t o c r e a t e k e r n e l :

VecAdd”) ;

LoadProgramSourceToMemory() is a utility method we
have provided to load the program code from a given location. As a
location, use the path of the kernel you implemented in Section 4.4.

Our kernel expects some parameters: the pointers to device memory
arrays and a number of elements. To provide them, we have to bind
values to these attributes before executing the kernel:

clError = clSetKernelArg (m_Kernel , 0 , s i z e o f (cl_mem) , (
vo id ∗)&m_dA) ;

clError |= clSetKernelArg (m_Kernel , 1 , s i z e o f (cl_mem) , (
vo id ∗)&m_dB) ;

clError |= clSetKernelArg (m_Kernel , 2 , s i z e o f (cl_mem) , (
vo id ∗)&m_dC) ;

clError |= clSetKernelArg (m_Kernel , 3 , s i z e o f (cl_int) , (
vo id ∗)&m_ArraySize) ;

V_RETURN_FALSE_CL (clError , ” F a i l e d t o s e t k e r n e l a r g s :
VecAdd”) ;

The second parameter is the zero-based index of the attribute. Bind
all four attributes using the same function call to the kernel. The
third parameter is the size of the passed value in bytes, so always
replace it using the appropriate type.

You should now navigate to CLUtil::BuildCLProgram-
FromMemory() and implement the utility method we will use in
all following assignments.

cl_program CLUtil : : BuildCLProgramFromMemory (cl_device_id
Device , cl_context Context , c o n s t std : : string&
SourceCode)

{

c o n s t c h a r∗ src = SourceCode .c_str () ;
size_t length = SourceCode .size () ;

cl_int clError ;
cl_program prog = clCreateProgramWithSource (Context , 1 ,

&src , &length , &clError) ;
i f (CL_SUCCESS != clError)
{
cerr<<” F a i l e d t o c r e a t e CL program from s o u r c e . ” ;
r e t u r n nullptr ;

}

/ / program c r e a t e d , now b u i l d i t :
clError = clBuildProgram (prog , 1 , &Device , NULL , NULL ,

NULL) ;
PrintBuildLog (prog , Device) ;
i f (CL_SUCCESS != clError)
{
cerr<<” F a i l e d t o b u i l d CL program . ” ;
SAFE_RELEASE_PROGRAM (prog) ;
r e t u r n nullptr ;

}

r e t u r n prog ;
}

Then the above example uses clCreateProgram-
WithSource() to create one program object using the
given source. Note that no real compilation took place until now.
You will have to use clBuildProgram() to actually compile
the program code into binary instructions for the selected OpenCL
device. Finally, clCreateKernel() creates a kernel object
from a built program. The second parameter is the name of the
entry point of the kernel, this must be the same as the name of your
function with the kernel prefix. Note that this way your code
can contain multiple kernels, each specified by a different entry
point.

Obviously, the compilation can fail due to coding errors. We can
of course detect them using the usual error code mechanism, but
the programmer would probably like to know the cause of the
failure. Since accessing the error message of the OpenCL build
process is slightly complicated, we provide you with another util-
ity function. If you detect that the program build failed, call the
PrintBuildLog() function which lists the related error mes-
sages to the console.

Now the kernel is properly compiled and ready to use. You can
use the command queue to run the kernel with a given number of
threads (work-items) using the clEnqueueNDRangeKernel()
function:

cl_int clEnqueueNDRangeKernel (
cl_command_queue command_queue ,
cl_kernel kernel ,
cl_uint work_dim ,
c o n s t size_t ∗global_work_offset ,
c o n s t size_t ∗global_work_size ,
c o n s t size_t ∗local_work_size ,
cl_uint num_events_in_wait_list ,
c o n s t cl_event ∗event_wait_list ,
cl_event ∗event)

The parameters that use should use are:

• command queue: The command to run the kernel will be
enqueued into this command queue.

• kernel: The kernel object to execute.

• work dim: The number of dimensions of the NDRange (1-
3). Currently you should use 1, since you want to add one-
dimensional arrays.

• global work size: The number of work-items in work dim
dimensions that execute the kernel function. The total num-

ber of work-items is computed by multiplying these values:
global work size[0] * ... * global work size[work dim - 1].

• local work size: The number of work-items in a work-
group. The numbers specified in the global work size should
always be multiples of the elements of the local work size.

All the remaining parameters should be set to NULL.

To make the code more flexible, we will let the user to specify the
local work size. That means, your assignment class implementation
must always calculate the necessary number of work-groups to ex-
ecute based on this user-controlled parameter. Actually, you cannot
set directly the number of work-items, but you have to set the global
work size, which indirectly determines this number.

You will extend the previously modified ComputeGPU() method
of your class, which already contains the copying of the input data
to the device. Prior to calling the clEnqueueNDRangeKernel
command, you have to determine the number of necessary work-
items to be launched. Of course this depends on the number of
components in the vectors (one work-item for each), but also on
the local work size, as the global work size should be the multiple
of these dimensions. We have provided a simple helper function
that computes the necessary dimensions for a given data element
number:

/ / CSimpleArraysTask . ComputeGPU () method . . .
size_t globalWorkSize = CLUtil : : GetGlobalWorkSize (

m_ArraySize , LocalWorkSize [0]) ;
size_t nGroups = globalWorkSize / LocalWorkSize [0] ;
cout<<” E x e c u t i n g ”<<globalWorkSize<<” t h r e a d s i n ”<<

nGroups<<” g ro up s o f s i z e ”<<LocalWorkSize[0]<<endl ;

[. . .]
/ / CLUt i l . cpp
size_t CLUtil : : GetGlobalWorkSize (size_t DataSize , size_t

LocalWorkSize)
{
size_t r = DataSize % LocalWorkSize ;
i f (r == 0)
{

r e t u r n DataSize ;
}
e l s e
{

r e t u r n DataSize + LocalWorkSize − r ;
}

}

Using the resulting global work size, run your kernel on the device:

clErr = clEnqueueNDRangeKernel (CommandQueue , m_Kernel , 1 ,
NULL , &globalWorkSize , LocalWorkSize , 0 , NULL , NULL

) ;
V_RETURN_CL (clErr , ” E r r o r e x e c u t i n g k e r n e l ! ”) ;

After this command is executed, the results should reside in the
device memory, on the address referenced by m dC. To read the
data back, issue a reading command:

clErr = clEnqueueReadBuffer (CommandQueue , m_dC , CL_TRUE ,
0 , m_ArraySize ∗ s i z e o f (i n t) , m_hGPUResult , 0 , NULL ,
NULL) ;

Note that this is a blocking call, as opposed to the recent memory
writing example. We need to have the valid data in the resulting
buffer before proceeding, therefore, the host must wait until the
device completes the execution of the command.

Compile and run your code again. If everything went fine, you
should see the following output:

[. . .]
Computing CPU reference result . . . DONE
Computing GPU result . . . Executing 1048576 threads in 4096

groups of size 256
DONE
GOLD TEST PASSED !
Computing CPU reference result . . . DONE
Computing GPU result . . . Executing 1048576 threads in 2048

groups of size 512
DONE
GOLD TEST PASSED !
[. . .]

Your kernel was executed two times, once having 256, then 512
work-items in a work-group. The results you copied back to the
m hGPUResult buffer are automatically compared to the refer-
ence solution, computed on the CPU. If your implementation is
correct, both tests passed, and your solution for the first assignment
is compete.

4.7 Measuring Execution Times

Until now, we did not say anything about optimizing the perfor-
mance of the application, however, this is one of the most important
things you should always spend time on once you have a working,
algorithmically correct solution. There can be multiple alternative
algorithms to solve a problem, and even a specific algorithm can
be implemented in a few different ways. The performance of the
application is not only influenced by the theoretical complexity of
the algorithm, but also by practical, hardware-dependent factors.

The most basic way of measuring the performance of our imple-
mentation is to measure its execution time. We are usually inter-
ested in the execution time of a given kernel: we measure the sys-
tem time before we start the kernel, and measure it after the kernel
execution is finished. The difference between the two times will
give us the kernel execution time. In the solution, you will find
a CTimer class to perform this measurement, so the first attempt
would result in a similar way:

CTimer timer ;
timer .Start () ;

clErr |= clEnqueueNDRangeKernel (CommandQueue , Kernel ,
Dimensions , NULL , pGlobalWorkSize ,
pLocalWorkSize , 0 , NULL , NULL) ;

timer .Stop () ;
do ub l e ms = timer .GetElapsedMilliseconds () ;

There are two problems with this code. The main issue is that
the kernel will not be executed immediately when we call the
clEnqueueNDRangeKernel() function, but it only enqueues
a command to the command queue. Second, since the call is asyn-
chronous, it immediately returns, so even if the kernel was run im-
mediately, we would stop the timer while the kernel is still running.
We should also mention, that sometimes the execution of the kernel
is really fast, and the built-in timer of the operating system has a
finite (not too high) resolution. In order to measure the execution
time more accurately, it is better to execute the examined kernel N
times, then divide the measured time interval with N. The higher N
is, the closer we can get to the real execution time.

Using this reasoning, the following code snippet measures the exe-
cution time of a given kernel properly:

CTimer timer ;
cl_int clErr ;

/ / w a i t u n t i l t h e command queue i s empty . . . i n i e f f i c i e n t
b u t a l l o w s a c c u r a t e t i m i n g

clErr = clFinish (CommandQueue) ;

timer .Start () ;

/ / run t h e k e r n e l N t i m e s
f o r (u n s i g n e d i n t i = 0 ; i < NIterations ; i++)
{
clErr |= clEnqueueNDRangeKernel (CommandQueue , Kernel ,

Dimensions , NULL , pGlobalWorkSize , pLocalWorkSize ,
0 , NULL , NULL) ;

}
/ / w a i t u n t i l t h e command queue i s empty a g a i n
clErr |= clFinish (CommandQueue) ;

timer .Stop () ;

i f (clErr != CL_SUCCESS)
{
cout<<” k e r n e l e x e c u t i o n f a i l u r e ”<<endl ;
r e t u r n −1;

}

do ub l e ms = timer .GetElapsedMilliseconds () / d ou b l e (
NIterations) ;

r e t u r n ms ;

Navigate to the CLUtil::ProfileKernel method in your so-
lution, and type the above code to the method’s body. From now
you have a function that measures the execution time of any kernel
you provide to it. Update your previously written execution code
for the first assignment to measure the performance of your kernel
(and print out the measured execution time to the console).

4.8 Evaluation
• Management of the device and context (1 point)

• Management of memory (3 points)

• Kernel implementation and execution (3 points)

• Timing of the program: use 4 different vector sizes and 4 dif-
ferent work-group sizes and compare the relative timings (in
a graph). You will be asked to provide some explanation dur-
ing the evaluation. (3 point)

5 Task 2: Reorganizing Memory Access
Through Local Memory

In this task you will learn about utilizing the on-chip local mem-
ory to improve parallel memory access efficiency of your applica-
tion. The problem we need to solve sounds trivial to implement
on the GPU at the first moment: instead of vectors, we are given
a two-dimensional array of floats (e.g. an image) that we need to
rotate with 90 degrees. Using a 1D linear array to represent the 2D
float-image we can index the elements using a single index of y *
array width + x.

A straightforward CPU-implementation of rotating the picture
would look like this:

/ / R o t a t e c l o c k w i s e
f o r (u n s i g n e d i n t x = 0 ; x < m_SizeX ; x++)
{

f o r (u n s i g n e d i n t y = 0 ; y < m_SizeY ; y++)
{

/ / MR(sY − y − 1 , x) = M(x , y)
m_hMR [x ∗ m_SizeY + (m_SizeY − y − 1)] = m_hM [y ∗

m_SizeX + x] ;
}

}

where m hMR is a linear array containing the rotated float-matrix,
and m hM is the original matrix. Note, that if the dimensions of the
original matrix is X × Y then the rotated result will be an Y ×X
matrix, so you will have to carefully index matrix elements. Your
implementation should also support arbitrary matrices for the
maximum points!.

Within the same solution as for the previous assignment open the
code of the CMatrixRotateTask class. It follows the same
structure as CSimpleArraysTask. The CPU-based solution is
already implemented for your reference. As the very first step, go to
ComputeCPU() method, and check the reference solution, which
should perform a clockwise 90-degrees rotation. Your implementa-
tion in OpenCL will be compared to this result.

The code of this assignment class is just a backbone, which you
have to extend according to the guidelines here and comments in
the code. Proceed as follows:

• Memory allocation Create two linear float arrays on the
device, which you will use as the input and output of
your rotation-kernel. The dimensions of these arrays should
be the same as the already existing m hM and m hMR ar-
rays. Implement the allocation of these arrays in the
InitResources() method, and release them in the
ReleaseResources() method. The output array should
be write-only, the input (original) array should be read-only
for the kernels.

• Copy input data to device Using the host pointer m hM,
copy the original matrix to your device memory, using a non-
blocking call.

5.1 Naı̈ve Implementation

Our experience form the previous assignment already allows us to
quickly implement the first version of the kernel that executes the
matrix rotation. In this kernel, each thread would be responsible for
loading exactly one matrix element into a local variable, and writing
it to the new location (according to the rotated index) directly to the
output array in the global memory.In the file MatrixRot.cl you
can already find the following function header for your kernel:

__kernel vo id MatrixRotNaive (__global c o n s t f l o a t ∗ M ,
__global f l o a t ∗ MR , uint SizeX , uint SizeY)

{}

As you can see, the first parameter is an input parameter (as it is
constant) and the results should be written to the output array passed
in the second attribute. Since the problem is now two-dimensional,
you will run this kernel in a two-dimensional NDRange, so you will
receive two size attributes as well. To access a specific element in
the matrix, use the 2D global index of work-items.

/ / g e t t h e g l o b a l i n d e x of t h e t h r e a d
int2 GID ;
GID .x = get_global_id (0) ;
GID .y = get_global_id (1) ;

Extend the kernel code to rotate the matrix properly.

Create a program object using this new source code, build it, and
create a kernel object for the MatrixRotNaive function. Now
you can run the kernel and read back its results from the output ar-
ray. Proceed in the same manner as shown in the previous example:

• Compile kernel Create a program object using this new
source code; build it and create a kernel object from the
MatrixRotNaive function.

• Set kernel args The kernel has four arguments, so bind the
appropriate values to these arguments.

• Run the kernel First you will need to determine the neces-
sary work size to set up the NDRange, this time in two di-
mensions. Use the helper function for both dimensions in the
following way:

/ / d e t e m i n e t h e n e c e s s a r y number o f g l o b a l work i t e m s
size_t globalWorkSize [2] ;
size_t nGroups [2] ;

globalWorkSize [0] = CLUtil : : GetGlobalWorkSize (
m_SizeX , LocalWorkSize [0]) ;

globalWorkSize [1] = CLUtil : : GetGlobalWorkSize (
m_SizeY , LocalWorkSize [1]) ;

nGroups [0] = globalWorkSize [0] / LocalWorkSize [0] ;
nGroups [1] = globalWorkSize [1] / LocalWorkSize [1] ;
cout<<” E x e c u t i n g (”<<globalWorkSize[0]<<” x ”<<

globalWorkSize[1]<<”) t h r e a d s i n (”<<
nGroups[0]<<” x ”<<nGroups[1]<<”) g ro up s

o f s i z e (”<<
LocalWorkSize[0]<<” x ”<<LocalWorkSize

[1]<<”) . ”<<endl ;

Using the resulting dimensions and execute the kernel with
the clEnqueueNDRange command.

• Read back results Create a pointer on the
host, called m hGPUResultNaive. Using
clEnqueueReadBuffer, read back the output of
the naive kernel using a blocking call.

If implemented correctly, the CPU-based evaluation of your first
kernel results should succeed.

5.2 Optimizing the Kernel Using Local Memory

You might wonder why did we always refer to the recent kernel
as ”naı̈ve”. In fact, we can only answer this question if we have
a deeper understanding of how the memory controller on GPUs
works. As each thread executes the same piece of code on different

elements of data in parallel, the threads obviously need to load and
store data elements from different locations. As a streaming mul-
tiprocessor has a single interface to the global memory, each per-
thread memory operation is executed through this shared ”gate”.
Instead of executing a load / store operation for a single thread at
once, the memory interface operates on words of 32-, 64- or 128-
byte length. It means that when you have e.g. 32 threads accessing
float values aligned in a continuous segment of 128 bytes, accessing
them can be performed within a single memory transaction. If the
addresses are not properly aligned, the memory manager will issue
32 memory instructions, one for each thread.

This feature is called memory coalescing, and can have a signifi-
cant impact on application’s performance, as the delay of a single
load / store operation can take 400 to 600 cycles. In fact, coalescing
has more constraints than described here, for details please refer to
documentation of the NVIDIA CUDA architecture.

Obviously, the naı̈veimplementation does not coalesce all the mem-
ory accesses, and the implementation is memory bandwidth limited.
Unfortunately, there is a fundamental change in the memory access
pattern of the work-items when loading values from the original
matrix, and storing values to the rotated matrix. Those threads,
which accessed the neighboring values during loading - thus, they
could be coalesced by the hardware - will not address continuous
words during storing, since horizontal lines in the original matrix
become vertical in the result.

The problem is impossible to overcome without using some kind
of intermediate storage, allowing the threads to reorganize memory
accesses, so that both loading / storing can be horizontally aligned.
The key idea is to split the whole rotation into two steps. First, we
load a small tile, for example 32 × 32 elements, into some inter-
mediate storage. After rotating the tile locally we will write the
elements row-by-row again. As this intermediate storage is small,
we can keep it in a fast on-chip memory, the OpenCL local memory,
where the latency is comparable to that of the registers. This way
the input and output is guaranteed to be aligned, so our performance
is significantly increased compared to implementations without the
local memory.

After understanding the theory let us put it into practice, and evalu-
ate through measurements whether it really works. Create a new
kernel in the code of your program source, using the following
header:

__kernel vo id MatrixRotOptimized (__global c o n s t f l o a t ∗ M ,
__global f l o a t ∗ MR , uint SizeX , uint SizeY ,

__local f l o a t ∗ block)

The only difference compared to the naı̈ve kernel is that a fifth pa-
rameter appeared, with a new prefix, local. This prefix tells the
compiler that the given pointer refers to the local, on-chip memory.
The kernel can both read and write this memory using random ac-
cess patterns, and it is not accessible from the host. Prior to running
the kernel, we will have to allocate local memory for it.

Now perform the coalesced load of data into this local block of
memory. Each work-group is assigned to one tile of the large matrix
and each work-item in the work-group will load exactly one element
from this tile into the temporary local buffer. In the implementation
it should look like this:

/ / g e t g l o b a l i n d e x of t h e t h r e a d (GID)
[. . .]

/ / g e t l o c a l i n d e x of t h e t h r e a d (LID)
int2 LID ;

LID .x = get_local_id (0) ;
LID .y = get_local_id (1) ;

block [LID .y ∗ get_local_size (0) + LID .x] = M [GID .y ∗
SizeX + GID .x] ;

/ / we need t o w a i t f o r o t h e r l o c a l t h r e a d s t o f i n i s h
w r i t i n g t h i s s h a r e d a r r a y

barrier (CLK_LOCAL_MEM_FENCE) ;

The code snippet uses the local id on the left side of the equation
while the global id on the right, so it maps one unique tile of the
input matrix to the local buffer.

Now comes the challenging part of the assignment. You have to
write back your results to the large result array in a way that it
is correctly rotated, and the horizontally neighboring work-items
write horizontally neighboring addresses. So we can say that now
the output addresses for each thread are fixed, and depending on
your rotation direction, you will have to find out how to index the
local memory. Implement the remaining part of the code to finish
the rotation and produce equivalent results to the naı̈ve kernel.

Create a kernel object for the MatrixRotOptimized function
as well, and bind its parameters as usual. As this is the first time
using the local memory, we show you how to bind the fifth param-
eter of the kernel, which performs the local memory allocation in
the same time:

/ / a l l o c a t e s h a r e d (l o c a l) memory f o r t h e k e r n e l
clErr = clSetKernelArg (m_OptimizedKernel , 4 ,

LocalWorkSize [0] ∗ LocalWorkSize [1] ∗ s i z e o f (f l o a t) ,
NULL) ;

V_RETURN_CL (clErr , ” E r r o r a l l o c a t i n g s h a r e d memory ! ”) ;

As the size of the allocated local memory depends on the local work
size, you should add this code snippet to your ComputeGPU()
method, before the kernel execution command.

You are now able to finish the assignment by reading back the re-
sult of the kernel to the m hGPUResultOpt host array. If your
implementation is correct, the validation will find the result of this
second kernel equivalent to the naı̈ve one, but you should experi-
ence relevant speedup when measuring the execution time.

5.3 Evaluation
• Naive implementation (4 points)

• Allocation of the local memory (1 point)

• Loading into local memory using tiles (2 points)

• Tile-wise implementation of the matrix rotation (2 points)

• Rotation of arbitrary (not just square) matrices (1 points)

6 Appendix: Building the startup kit

Prerequisites You will need a C++ compiler which supports C++
11 to build the startup kits. For Windows users we recommend
Visual Studio 2012 and above. Linux users can usually use the gcc
supplied with their distribution if it is recent enough.

Download and install the OpenCL drivers/development environ-
ment matching your graphics card. For NVidia cards this is the
NVidia CUDA Toolkit (which includes OpenCL libraries and head-
ers), for AMD cards use the AMD APP SDK. Intel graphics card
users should download the Intel SDK for OpenCL applications. Be-
fore starting with the instructions, download and uncompress the

startup kit to your machine. The instructions below will refer to the
root folder of the startup kit with <root>.

CMake We use the CMake system to build the startup kits. CMake
does not build the executable itself, but instead builds project files
for platform specific build systems. If you use Windows, you can
use it to build project files for Visual Studio, for Linux you might
want to build Makefiles or perhaps an Eclipse project. CMake has
a number of Generators that perform the actual generation. You
can get the list of supported generators by invoking cmake with-
out any parameters. Selecting a generator can be done using the
-G command line option. The following instructions will describe
how to build the startup kits using Visual Studio on Windows and
Makefiles on Linux, but feel free to use your favorite IDE if there is
a generator for it. If no explicit generator is given, CMake will use
a default generator for that system (depending on installed IDEs/-
compilers).

It is generally recommended to do an out-of-source build and have
your binaries in a completely separate directory subtree from your
sources. This will allow you to delete that subtree to clean your
workspace. The steps below describe such a build.

There is also a GUI for CMake (cmake-gui) if your prefer to use
one. On Windows, it is installed by default when you install
CMake, on Linux you can install it through your package manager.
However, the installation steps below use the command line version
of CMake.

6.1 Windows

1. Download CMake from www.cmake.org (Using the bi-
nary installer is the easiest way), any version starting from
2.8.3 should be fine. (CMake is already installed on the ATIS
machines.)

2. Install CMake. The following steps assume that you added
cmake.exe to your PATH. If you didn’t, you will have to
prepend the correct path to all cmake invocations. On the
ATIS pool machines, CMake is not contained in the path,
so you will have to use the complete path (which is c:
\Program Files (x86)\CMake\bin\cmake.exe)

3. Open a command prompt in <root>.

4. Create a new subdirectory for the binaries using md
Assignment1.build (or any other name or your choice).

5. Change into that subdirectory using cd
Assignment1.build.

6. Invoke CMake, giving it the source directory as a parameter:
cmake ..\Assignment1 (you can use the -G option to
specify a generator). This should output a few messages but
no errors. The Visual Studio files will be generated in the
current directory (Assignment1.build).

7. Open the Solution file with Visual Studio. The startup
project is set to ALL BUILD by default. Change the startup
project to the Assignment project by right-clicking it and se-
lecting Set as startup project.

8. Now you can compile and run the Assignment project. Com-
piling should finish without errors. The created binary needs
to be run in the source directory because it needs to access the
OpenCL source files. However, this has already been set as a
working directory for the Assignment project.

6.2 Linux

1. Install cmake with your distribution’s package manager (e.g.
yum, apt-get, pacman, etc.) Usually doing something
along the lines of sudo apt-get install cmake will
work. (CMake is already installed on the ATIS machines.)

2. Open a command prompt in <root>.

3. Create a new subdirectory for the binaries using mkdir
Assignment1.build (or any other name or your choice).

4. Change into that subdirectory using cd
Assignment1.build.

5. Invoke CMake, giving it the source directory as a parameter:
cmake ../Assignment1 (you can use the -G option to
specify a generator). This should output a few messages but
no errors. The makefiles (default) will be generated in the
current directory (Assignment1.build).

6. Run make in the build directory. This should finish with-
out errors and leave you with a binary named Assignment.
This binary needs to be run in the source directory because it
needs to access the OpenCL source files.

7. Change to the source directory (cd ../Assignment1).

8. Run the binary in the binary directory
(../Assignment1.build/Assignment)

6.3 Problems?

A problem that might occur when building the startup kits is that
the OpenCL header files (CL/cl.h) and/or libraries (OpenCL.
lib/libOpenCL.so) cannot be located by CMake. In this
case, first make sure you installed the OpenCL SDK as mentioned
above. On windows, the environment variables set by the in-
stallers of these SDKs are used to find the headers files and the
libraries, so make sure those environment variables are set (you can
look them up in <root>/cmake/FindOpenCL.cmake). On
Linux some default locations in the file system are checked (also
see <root>/cmake/FindOpenCL.cmake). If CMake is un-
able to locate the headers/libraries, you can set the environment
variables OpenCL INCPATH and OpenCL LIBPATH manually
to provide the locations.

If you don’t succeed in building the startup kits, we will try to help,
but we cannot support all possible combinations of OS/GPU/Com-
piler out there. We made sure the startup kits can be built on the
ATIS machines, so please use them instead.

6.4 ATIS pool machines

Building the startup kits should work on the ATIS pool machines
out of the box whether booted into Windows or Linux (Fedora 20).
CMake is installed on both OSes, as are the necessary compiler-
s/IDEs and CUDA toolkits.

www.cmake.org

	Parallel Programming
	History of Graphics Accelerators
	Programming Languages and Environments

	Computing Architecture of Modern GPUs
	Streaming Design
	Memory Model
	Device Memory
	On-chip Memory

	The OpenCL Platform
	Platform Model - Host and Devices
	Execution Model
	Memory Model
	Programming Model
	Explicit Hierarchical Data Parallel Programming Model
	Synchronization

	Task 1: First OpenCL Program
	Skills You Learn
	Problem
	Setting up the Device Context
	Kernel Implementation
	Managing Data on the Device
	Compile and Execute the Kernel
	Measuring Execution Times
	Evaluation

	Task 2: Reorganizing Memory Access Through Local Memory
	Naïve Implementation
	Optimizing the Kernel Using Local Memory
	Evaluation

	Appendix: Building the startup kit
	Windows
	Linux
	Problems?
	ATIS pool machines

