
Real-Time Polygonal-Light Shading with Linearly Transformed Cosines

Eric Heitz Jonathan Dupuy Stephen Hill David Neubelt
Unity Technologies Unity Technologies Ubisoft Ready At Dawn Studios

Figure 1: We use Linearly Transformed Cosines to shade physically based materials with polygonal lights in real-time. Our technique
supports arbitrary, non-convex, potentially textured polygonal lights. The shading time for the primary lighting pass in each of these config-
urations is 2.4ms, 7.5ms, and 2.4ms, respectively. Timings are for an image resolution of 1920 × 1080 pixels, for the area-light shader only,
without MSAA, with an NVIDIA GeForce GTX 980 GPU.

Abstract

In this paper, we show that applying a linear transformation—
represented by a 3×3 matrix—to the direction vectors of a spherical
distribution yields another spherical distribution, for which we de-
rive a closed-form expression. With this idea, we can use any spher-
ical distribution as a base shape to create a new family of spheri-
cal distributions with parametric roughness, elliptic anisotropy and
skewness. If the original distribution has an analytic expression,
normalization, integration over spherical polygons, and importance
sampling, then these properties are inherited by the linearly trans-
formed distributions.

By choosing a clamped cosine for the original distribution we ob-
tain a family of distributions, which we call Linearly Transformed
Cosines (LTCs), that provide a good approximation to physically
based BRDFs and that can be analytically integrated over arbitrary
spherical polygons. We show how to use these properties in a real-
time polygonal-light shading application. Our technique is robust,
fast, accurate and simple to implement.

Keywords: Shading, BRDF, area lighting, real-time rendering

Concepts: •Computing methodologies → Reflectance model-
ing;

1 Introduction

Physically based shading involves the computation of the illumi-
nation equation, i.e. integrating the product of a Bidirectional Re-
flectance Distribution Function (BRDF) and the lighting in the
spherical domain. In this paper, we are primarily interested in shad-
ing from polygonal lights, which implies computing the integration
of a BRDF over a spherical polygon. Despite polygonal lights being
theoretically one of the simplest lighting models, they are challeng-
ing in real-time rendering for two main reasons:

• Integrating parametric spherical distributions over spherical
polygons is difficult in general, even with the simplest distri-
butions. For instance, the analytic Phong-polygon integration

SIGGRAPH ’16 Technical Paper,, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925895

is prohibitively costly [Arvo 1995] and there is no analytic
solution for Spherical Gaussians [Xu et al. 2014].

• State-of-the-art physically based material models are not sim-
ple distributions [Hill et al. 2015]; they have sophisticated
shapes with anisotropic stretching and skewness that need to
be represented for the material to appear realistic.

In Sec. 3, we introduce Linearly Transformed Spherical Distribu-
tions (LTSDs), a new kind of spherical distribution that solves these
two problems. We start from an original spherical distribution and
apply a linear transformation—represented by a 3 × 3 matrix—to
its direction vectors. This yields a parameterization that allows us
to modify the shape of the original distribution, such as roughness,
elliptic anisotropy and skewness, as illustrated in Fig. 2. Thanks
to this parameterization, we can use any spherical distribution to
create a new family of parametric spherical distributions with dif-
ferent base shapes, as shown in Fig. 3. The main feature of these
distributions is that they inherit several properties of the original
distribution such as normalization, integration over arbitrary spher-
ical polygons, and importance sampling.

In Sec. 4, we show that using a clamped cosine for the original dis-
tribution yields a family of distributions—which we call Linearly
Transformed Cosines (LTCs)—that provide a good approximation
to physically based BRDFs thanks to the wide variety of spherical
shapes they cover. Furthermore, since a clamped cosine distribution
can be analytically integrated over arbitrary spherical polygons, so
can the LTCs. In Sec. 5, we show how to use this property in a
real-time polygonal-light shading application.

2 Previous Work

Polygonal-Light Shading Analytic solutions to polygonal light-
ing are currently limited to cosine-like distributions. Integrating
a clamped cosine over a polygonal domain—i.e. computing the
irradiance from a polygon—was solved centuries ago by Lam-
bert [1760] and introduced to computer graphics by Baum et
al. [1989]. This was extended by Arvo [1995] to Phong distribu-
tions, i.e. cosines with an exponent that controls the sharpness of
the distribution. A detailed implementation of Arvo’s technique is
provided by Snyder [1996]. The main limitation of this approach is
that the complexity of the Phong-polygon integration is O(e · n),
where n is the number of polygon vertices and e the Phong expo-
nent, i.e. the cost of the integration increases with the sharpness
of the distribution. This is why video-games use cheaper approx-

http://dx.doi.org/10.1145/2897824.2925895

a) original (D = Do) b) roughness c) elliptic anisotropy d) skewness

M =

1 0 0
0 1 0
0 0 1

 M =

0.3 0 0
0 0.3 0
0 0 1

 M =

0.8 0 0
0 0.2 0
0 0 1

 M =

1 0 0
0 1 0
1 0 1


Figure 2: Parameterizing spherical distributions with linear transformations. We generate new distributions by applying a linear transfor-
mation, represented by matrix M , to the direction vectors associated with the original distribution. Its effect can be seen on the lines and
the red cube. In this figure Do is a clamped cosine distribution (a). The matrix M provides control over roughness (b), anisotropy (c) and
skewness (d) of the transformed distribution.

imations instead, such as the most-representative-point heuristic,
where the area light is replaced with a point light [Wang et al.
2008; Drobot 2014]. While such techniques are cheap enough to
be used in real-time, they are inaccurate and do not guarantee ro-
bust integration: the result can be off by several orders of magni-
tude and exhibit visual artifacts in some configurations [Lagarde
and de Rousiers 2014]. The most recent concurrent work dedicated
to polygonal lights is the technique of Lecocq et al. [2015]. They
provide an approximate solution to the Phong-polygon integration
in O(n), i.e. independent of the sharpness of the distribution. Their
integration is fast enough to be computed in real-time. However,
it remains approximate and limited to the rotationally symmetric
shapes of Phong lobes. They propose to use the Phong distribu-
tion as a microfacet distribution, which needs to be integrated over
a non-polygonal halfspace domain. They approximate this domain
with a polygon and compute their approximate Phong integration
over it. Although this approach recovers the anisotropy of micro-
facet models, the successive approximations result in visible arti-
facts in some configurations. While the complexity of the integra-
tion with our technique is alsoO(n), the result is exact and our dis-
tribution covers complex spherical shapes with elliptic anisotropy
and skewness. Our technique is also much simpler to implement:
it boils down to multiplying the n polygon’s vertices by a matrix
before computing its irradiance with the classic Lambert formula.

Spherical Distributions There are few spherical distributions
that represent sophisticated shapes and at the same time provide
useful integration properties. Spherical Harmonics are limited to
low-frequency shapes. The most common all-frequency distribu-
tions used in computer graphics are rotationally symmetric lobes:
either Phong distributions [Phong 1975] or Spherical Gaussians,
also known as von Mises-Fisher distributions [Fisher 1953]. De-
spite their simplicity, integrating them is already a challenging
problem. As discussed above, approximations are required for ef-
ficient integration of Phong distributions over spherical polygons;
similarly, integrating Spherical Gaussians over sharp spherical do-
mains can only be done approximately and requires precomputed
look-up tables [Iwasaki et al. 2012; Xu et al. 2014]. Further-
more, designing more sophisticated distributions often means giv-
ing up on simple properties. For instance, distributions with elliptic
anisotropy from the field of statistics [Bingham 1974; Kent 1982]
have no useful analytic operators. Anisotropic Spherical Gaussians
(ASGs) were designed to provide approximate operators for such
distributions in computer graphics applications [Xu et al. 2013].

However, computing their normalization factor—their integral over
the sphere—already requires the evaluation of a complex formula.
Deriving a practical solution for integration over spherical polygons
therefore seems unlikely.

3 Linearly Transformed Spherical
Distributions

In this section, we introduce Linearly Transformed Spherical Dis-
tributions (LTSDs). We show how an original distribution can be
reshaped by applying a linear transformation to its direction vec-
tors (Fig. 2), we define the new distributions obtained in this way
(Fig. 3), and we discuss their properties.

Original distributions Do

Uniform Uniform Clamped Clamped
Sphere Hemisphere Cosine Cosine2

Linearly transformed distributions D

Figure 3: Linearly Transformed Spherical Distributions. The
choice of the original distribution allows us to create families of
parametric distributions with different base shapes.

3.1 Definition

Original Distribution to be Transformed Do denotes the origi-
nal distribution that we reparameterize with linear transformations.
The choice of Do controls the base shape of the transformed distri-
butions, as shown in Fig. 3.

Linear Transformations To generate a new distribution D, we
apply a linear transformation represented by a 3 × 3 matrix M
to the direction vectors ωo of the original distribution Do. Fig. 2
shows how the choice of M affects the properties of the distribu-
tion. Note that throughout the paper, we assume normalized direc-
tion vectors, i.e. the exact transformation1 is ω =M ωo/‖M ωo‖
and, reciprocally, we recover the original direction with the inverse
transformation: ωo =M−1 ω/‖M−1 ω‖.

Closed-Form Expression The magnitude of an LTSD is the
magnitude of the original distribution Do in the original direction
ωo multiplied by the change of solid angle measure due to the dis-
tortion of the spherical transformation. It has the closed-form ex-
pression:

D(ω) = Do (ωo)
∂ωo

∂ω
= Do

(
M−1 ω

‖M−1 ω‖

)
|M−1|
‖M−1ω‖3 , (1)

where ∂ωo
∂ω

= |M−1|
‖M−1ω‖3 is the Jacobian of the transformation of

normalized direction vectors ω = M ωo/‖M ωo‖. We provide a
proof of this result in Appendix A.

Shape Invariance The distribution is invariant to scaling trans-
formations (M = λ I) since scaling vectors doesn’t change their
directions. Furthermore, rotations only change the orientation of
the distribution, not its shape. This is because the Jacobian of the
spherical transformation is constant if M is a scaling or rotation
matrix: ∂ωo

∂ω
= 1.

Median Vector With several classic original distributionsDo, the
z-vector (0 0 1)T is the median vector, i.e. any plane that contains
this vector cuts Do into two parts of equal weight 1

2
. This property

is preserved by the transformation: the transformed median vector
is the median vector of the transformed distribution D. In all of
the configurations of Fig. 2, the right column of M is (0 0 1)T , i.e.
the median vector remains aligned with the z-axis. For instance,
in Fig. 2.d, the skewness squashes the distribution on one side and
stretches it on the other side, and the z-axis remains the median of
the distribution.

3.2 Properties

The transformed distribution D inherits several properties of the
original distribution Do.

Normalization The norm of an LTSD D is the norm of its origi-
nal distribution Do. By using Eq. (1) we get∫

Ω

D(ω) dω =

∫
Ω

Do(ωo)
∂ωo

∂ω
dω =

∫
Ω

Do (ωo) dωo. (2)

1Note that the normalization after the linear transformation makes the
final transformation ω = M ωo/‖M ωo‖ non-linear. We have chosen
to keep the adjective “linear” because it provides the intuition of how the
original distribution is transformed by M . Furthermore, some properties of
LTSDs, such as the invariance of the polygonal integration (Fig. 4), are di-
rectly due to the linearity of the 3D transformation before the normalization.

Integration over Polygons The integral of an LTSD D over a
polygon P is the integral of the original distribution Do over the
polygon Po = M−1P obtained by applying the inverse transfor-
mation M−1 to each vertex of the polygon:∫

P

D(ω) dω =

∫
Po

Do(ωo) dωo, (3)

which we obtain with the same change of variable as in Eq. (2).
We provide an explanation of this result in Fig. 4. Intuitively, the
integral in Eq. (3) is the probability that a direction sampled in D
intersects the polygon P . Any linear transformation applied to both
the direction vectors ofD and the polygon P does not change these
intersections, and hence preserves the value of the integral. We use
this property by applying M−1 that transforms the distribution D
back into the original distribution Do, and the polygon into an-
other polygon Po =M−1 P . As a result, the integral of D over P
equals the integral of Do over Po.

D P

p1

p2

p3

p4

same intersections m same integrals

Do

Po =

M−1P

p1,o
p2,o

p3,o

p4,o

Figure 4: Invariance of the polygonal integration. The configu-
ration on the bottom is the top configuration multiplied by matrix
M−1. Since the linear transformation doesn’t change line-polygon
intersections, samples generated in the distribution have the same
probability of intersecting the polygon in both configurations. The
integral of the distribution over the spherical polygon is thus the
same in both configurations.

Importance Sampling Thanks to the definition of LTSDs, if Do

can be importance sampled then so can be D. As shown in Algo-
rithm 1, we generate a random sample ωo from Do and we trans-
form ω = M ωo

‖M ωo‖ . Because the LTSD defined in Eq. (1) is Do

multiplied by the Jacobian of this transformation, the probability
density function (PDF) of the sample ω is exactly D(ω).

Algorithm 1 Importance Sampling
sample ωo from Do . PDF(ωo) = Do(ωo)
return ω = M ωo

‖M ωo‖ . PDF(ω) = Do(ωo)
∂ωo
∂ω

= D(ω)

4 Approximating Physically Based BRDFs
with Linearly Transformed Cosines

In this section, we show that choosing a clamped cosine distribution
for the original distribution allows us to create a family of linearly
transformed distributions that yield a good approximation to phys-
ically based BRDFs.

Linearly Transformed Cosines For the original distribution Do

we choose a normalized clamped cosine distribution in the hemi-
sphere given by the z direction:

Do(ωo = (x, y, z)) =
1

π
max(0, z), (4)

and Linearly Transformed Cosines (LTCs) are defined by substitut-
ing Do in Eq. (1).

Fitting We choose to approximate the GGX microfacet
BRDF [Walter et al. 2007], which is currently considered to be
the most realistic parametric BRDF [Hill et al. 2015]. More
specifically, we approximate the spherical functions given by the
cosine-weighted BRDFs over the light directions ωl:

D ≈ ρ(ωv,ωl) cos θl. (5)

For an isotropic material, the BRDF depends on the incident direc-
tion ωv = (sin θv, 0, cos θv) and the roughness parameter α. For
any combination (θv, α) we fit the cosine-weighted BRDF with a
Linearly Transformed Cosine, i.e. we find the matrix M that yields
the best fit. Thanks to the planar symmetry of isotropic BRDFs, and
since Linearly Transformed Cosines are scale invariant, M can be
represented as

M =

a 0 b
0 c 0
d 0 1

 , (6)

so only 4 parameters need to be fitted. Empirically, we found that
minimizing the L3 error yields the best visual results in terms of
shading. Fig. 5 shows results of our fitting.

α = 0.1 α = 0.1 α = 0.3 α = 0.3
θv = 45◦ θv = 75◦ θv = 45◦ θv = 75◦

GGX

D

Figure 5: Fitting parametric BRDFs with Linearly Transformed
Cosines. We precompute a set of Linearly Transformed Cosines
that provide the best fits for a GGX microfacet BRDF with varying
incident angle θ and roughness α. Our distribution captures the
anisotropy and skewness of the target distribution. More results in
our supplemental material.

Representation and Storage The polygonal integral in Eq. (3)
only needs the inverse matrix M−1. After the fitting procedure,
we store the inverse matrices in a precomputed table. Similar to
Eq. (6), M−1 can be represented by 4 parameters for isotropic
BRDFs. Furthermore, we use an additional parameter for the norm∫

Ω
ρ(ωv,ωl) cos θl dωl of the fitted BRDF. We store a total of 5

parameters in 2D float textures of resolution 64×64, parameterized
by θ ∈ [0, π

2
] and

√
α ∈ [0, 1], and fetched with linear interpola-

tion. The size of the precomputed data is 80KB.

5 Real-Time Polygonal-Light Shading
with Linearly Transformed Cosines

Shading with diffuse polygonal lights means computing the illumi-
nation integral over a polygonal domain:

I =

∫
P

L(ωl) ρ(ωv,ωl) cos θl dωl, (7)

where ωv is the view direction, ρ the BRDF, P the polygon, and L
the radiance emitted by the polygon and received from direction ωl.
In order to use the properties of Linearly Transformed Cosines, at
runtime we fetch matrix M−1 of the Linearly Transformed Cosine
D associated with incident angle θv and roughness α of the BRDF,
and we use the approximation of Eq. (5) in Eq. (7):

I =

∫
P

L(ωl) ρ(ωv,ωl) cos θl dωl

≈
∫
P

L(ωl)D(ωl) dωl. (8)

5.1 Shading with Constant Polygonal Lights

If the radiance emitted by the polygonal light is spatially constant,
i.e. L(ωl) = L, it becomes a separable multiplication factor of the
integral

I =

∫
P

L(ωl)D(ωl) dωl = L

∫
P

D(ωl) dωl. (9)

Thanks to the polygonal integration property from Eq. (3), we sim-
plify ∫

P

D(ω) dω =

∫
Po

Do(ωo) dωo = E (Po) , (10)

where E is the irradiance of the polygon Po = M−1P . Indeed,
since Do is a clamped cosine distribution, its integral over a poly-
gon is the irradiance of this polygon, which has a closed-form ex-
pression [Baum et al. 1989]:

E (p1, ..,pn) =
1

2π

n∑
i=1

acos
(
〈pi,pj〉

)〈 pi × pj
‖pi × pj‖

,

00
1

〉,
(11)

with j = (i+1) mod n. Note that the formula assumes a spherical
polygon located in the upper hemisphere. In practice, we clip each
edge of the polygon before adding its contribution in the sum of
Eq. (11).

5.2 Shading with Textured Polygonal Lights

In this section, we assume that the radiance L(ωl) emitted by the
polygon is represented by a 2D color texture applied to it. In this
case it cannot be separated from the integral. We rewrite the Eq. (8):

I ≈
∫
P

L(ωl)D(ωl) dωl = ID IL, (12)

ID =

∫
P

D(ωl) dωl, (13)

IL =

∫
P
L(ωl)D(ωl) dωl∫
P
D(ωl) dωl

. (14)

The advantage of this formulation is that it allows us to break the
problem into two subproblems—computing ID and IL—that have
different properties.

The Shape of the Highlight The value of ID is the integral of
the distribution over the polygonal domain, i.e. it is the fraction of
rays in D that intersect P . It drives the order of magnitude of the
integral I and shapes the highlight. We compute its exact value with
Eq. (3).

The Color of the Highlight In contrast, IL can be seen as the
average color gathered by the rays in D that intersect P and is re-
sponsible for the color of the highlight. It can be formulated as
a texture-space filter, which we propose to approximate with pre-
filtered textures. In the following, we describe how to prefilter the
texture with Levels of Detail (LODs) and how to parameterize a
texture fetch.

5.3 Texture Prefiltering

Eq. (14) defines IL as the values of the texture L passed through
a filter F (ωl) = D(ωl)∫

P D(ωl) dωl
projected in texture space. In the

prefiltering step, we approximate F with a texture-space Gaussian
filter. There are two properties of F to be preserved by the approxi-
mate filter: F is clamped to the polygon, i.e. F = 0 outside the tex-
ture, and F is normalized inside the texture:

∫
P
F (ωl) dωl = 1.

In practice, it means that the approximate texture-space filter cannot
leak outside the texture. To achieve this, we clamp and renormal-
ize the texture-space Gaussian inside the texture. Furthermore, the
values of the prefiltered texture have to be defined everywhere in
texture space, even outside the texture. As illustrated in Fig. 6, we
introduce a margin around the texture. In this region, we increase
the radius of the filter so that it intersects the texture. This is nec-
essary for the filter to be well-defined. Finally, beyond the margin,
we clamp texture coordinates to the edge. This representation de-
fines a smooth, low-frequency function everywhere in texture space
outside the texture. It is a property expected from the exact filter F .

input texture prefiltered LOD 0 prefiltered LOD 1

Figure 6: Texture Prefiltering. The circles show the radius of the
texture-space filter at various locations. Inside the texture, the ra-
dius is chosen according to the LOD. Outside the texture, we in-
crease the radius so that it intersects the texture.

5.4 Texture Fetching

On the Difficulty of Fetching Prefiltered Area-Light Textures
Parameterizing a texture fetch requires two quantities: the texture
coordinates and the LOD. A naive approach consists of computing
the coordinates, in texture space, of the intersection of the average
(or median) direction of the distribution. This approach is unstable
and sometimes ill-defined. For instance, in Fig. 7.a, the average
direction of the distribution fails to intersect the texture plane. An-
other difficulty is that the appropriate LOD depends on several pa-
rameters: the sharpness of the distribution, and the inclination and
the distance of the texture plane.

Simplifying the Problem with the Cosine Configuration To
simplify the problem, we express it in the cosine configuration as-
sociated with D. This transformation is illustrated in Fig. 7. As for
polygonal integration in Eq. (3), we apply the inverse matrix M−1

to the configuration, i.e. we transform

IL =

∫
P
L(ωl)D(ωl) dωl∫
P
D(ωl) dωl

=

∫
Po
Lo(ωl)Do(ωl) dωl∫
Po
Do(ωl) dωl

, (15)

where Po = M−1P is the polygon in the cosine configuration
and Lo(ωl) the associated transformed texture. The advantage of
this configuration is that parameterizing a texture-space filter that
approximates the cosine distributionDo is much simpler and robust
than for an arbitrary distribution D.

Fetching the Prefiltered Texture in the Cosine Configuration
In the cosine configuration, we use the orthonormal projection of
the shading point onto the texture plane (Fig. 7). This point is al-
ways well-defined, simple to compute, and yields accurate texture
fetches regardless of the sharpness of distribution D, as shown in
Fig. 7.b. Furthermore, since it is an orthonormal projection, the
texture plane inclination at this point is exactly 90◦ and therefore
doesn’t introduce anisotropy to the texture-space filter shape. We
neglect the low-frequency variations of the cosine distribution and
the anisotropic distortion of the texture parameterization after the
polygon’s transformation. The choice of the LOD reduces to a 1D
function of the ratio between the squared distance r2 to the texture
plane and the areaA of the polygon. We choose the LOD prefiltered

with a Gaussian of standard deviation σ =
√

r2

2A
in texture space.

D

P

(a)

⇔

Do

Po

D

P

(b)

⇔

Do

Po

Figure 7: Texture fetching. The configuration on the right is the
left configuration multiplied by matrix M−1. (a) The average di-
rection of the distribution (black) doesn’t intersect the texture plane
and cannot be used for fetching. In the cosine configuration, we
use the orthonormal projection of the shading point onto the tex-
ture plane (red), which is always well-defined. (b) In the cosine
configuration we fetch the texel expected from the sharp distribu-
tion. This is because the angular difference between the average
direction (black) and the orthonormal projection used for the fetch
(red) is compensated for by the stretched polygon.

6 Results

Game Engine Integration Our technique is easy to integrate into
an existing real-time rendering pipeline. Fig. 8 shows a scene in
which the lighting is computed with our technique in a video-game
engine. The scene contains 8 rectangular lights and the total render-
ing time per frame is 15ms at 1280× 720 on an NVIDIA GeForce
GTX 980 GPU.

Figure 8: Integration into a game engine. The scene contains 8
rectangular lights and the total rendering time per frame is 15ms
on an NVIDIA GeForce GTX 980 GPU at 1280 × 720 pixels.

Performance We benchmarked our shader by rasterizing a full-
screen quad covering 1280 × 720 pixels on an NVIDIA GeForce
GTX 980 GPU. With the rectangle (4 edges) from Fig. 9, the shad-
ing time is 0.64ms and it is independent of the roughness α of the
approximated GGX BRDF. Furthermore, the performance doesn’t
change with the additional texture fetch. This is because the bottle-
neck of the shading is located in the polygon’s irradiance compu-
tation. With the star-shaped polygon (10 edges) from Fig. 10, the
shading time is 1.66ms. As expected from Eq. (3), the algorithm
scales linearly with the number of polygon edges.

Comparison Against Ground Truth In Figs. 9, 10, 11, and 12
we show comparisons of our technique against ground-truth results.
We compute the ground truth by importance sampling the GGX mi-
crofacet BRDF and we raytrace the area lights. Even though our
technique introduces some error compared to the ground truth, it
always yields visually plausible results, which are often accurate.
The exact LTC-polygon integration also guarantees robustness and
avoids special cases or singularities, unlike the most-representative-
point heuristic [Lagarde and de Rousiers 2014]. To understand the
sources of errors, recall that the core idea of Sec. 5.2 is to separate
the computation of the highlight’s shape and colors. The approxi-
mation that affects the shape of the highlight is the BRDF fitting.
The results show that the fitting is less accurate for high roughness
and grazing incidence. This is consistent with the fitting results

from Fig. 5. The approximation that affects the colors of the high-
light is related to the prefiltered texture fetches. Fig. 11 shows that
we fetch the expected texels with sharp, almost specular BRDFs,
as explained in Sec. 5.4 and Fig. 7. The difference becomes no-
ticeable with rough reflections, i.e. wide texture-space filters. With
homogeneous or low-frequency textures, any sufficiently wide filter
will return a value close to the average of the texture, so it doesn’t
need to be accurate to match the ground truth. However, the filter
shape is important with heterogeneous, or highly-varying texture
content, and our isotropic Gaussian filter is only a rough approx-
imation of the texture-space projection of the clamped cosine. A
noticeable difference can be seen in the stretching of the highlight’s
colors that is present in the ground truth but absent from our re-
sults. Whether parameterizing anisotropic texture fetches in our
technique could significantly improve those results is worth further
investigation. Fig. 12 shows failure cases where the textures are
too heterogeneous for the approximate filter shape to be accurate.
The errors result in a global bias in the first case and artifacts in the
second case.

7 Conclusion and Future Work

We have derived Linearly Transformed Spherical Distributions
(LTSDs), a new way of parameterizing spherical distributions that
covers a variety of spherical shapes with several analytic properties,
such as closed-form expressions, normalization, integration over
polygons, and importance sampling. We applied this idea to polyg-
onal shading with physically based BRDFs using Linearly Trans-
formed Cosines, one instance of these new distributions.

Integration over Other 3D Shapes It is worth noting that the
integration invariance of LTSDs is not limited to polygons, but also
applies to any class of 3D surfaces invariant to 3D linear transfor-
mations. For instance, linearly transformed ellipsoids remain ellip-
soids. Hence, if an original distribution can be integrated over an
ellipsoid then so can the linearly transformed distributions, with the
same change of variable as in Eq. (3). For instance, if a solution
were available for computing the irradiance from an ellipsoid, we
could directly use it to integrate ellipsoids against Linearly Trans-
formed Cosines. The same idea applies to ellipses.

Deriving Other Operators We currently do not know whether it
is possible to derive other analytic operators that could be useful for
rendering applications, such as the inner product or convolution.

Parameter Estimation We would also like to investigate whether
it is possible to fit LTSDs to a target distribution by directly extract-
ing a matrix M instead of using non-linear optimization as we cur-
rently do for physically based BRDFs. For instance, we have shown
that the median vector is preserved by linear transformations, and it
directly yields the third column of matrix M . Finding other invari-
ants of LTSDs are thus a possibility worth exploring for parameter
estimation.

Acknowledgements

The authors wish to thank Robert Cupisz for integrating the
polygonal-light shading technique into the Unity engine and the
Unity Demo Team artists for creating the scene. The pictures in
Figure 8 were rendered thanks to them. The authors also thank
Branimir Karadžić for the bgfx graphics library and generous tech-
nical support. In addition, the authors acknowledge Frank Meinl
and Morgan McGuire for the Sponza scene, as well as Alexandre
Pestana for updated materials.

D GGX D GGX
analytic raytraced analytic raytraced

α
=

0
.0
1

α
=

0
.1
0

α
=

0
.2
5

α
=

te
xt

ur
e

Figure 9: Comparison against ground truth with a constant polyg-
onal light. More results in our supplemental material.

D GGX D GGX
analytic raytraced analytic raytraced

α
=

0
.0
1

α
=

0
.1
0

α
=

0
.2
5

α
=

te
xt

ur
e

Figure 10: Comparison against ground truth with a constant, non-
convex polygonal light. More results in our supplemental material.

D GGX D GGX
analytic raytraced analytic raytraced

α
=

0.
01

α
=

0.
05

α
=

0.
25

α
=

te
xt

ur
e

Figure 11: Comparison against ground truth with textured polyg-
onal lights. More results in our supplemental material.

ours raytraced

Figure 12: Failure cases of our texture fetching. We use our pre-
filtered texture fetching technique with a stained glass texture (top)
and a texture mask emulating a disk (bottom). In these cases, the
textures are too heterogeneous for the approximate filter shape to
be accurate. The errors result in a global bias in the first case (top)
and artifacts in the second case.

References

ARVO, J. 1995. Applications of irradiance tensors to the simulation
of non-lambertian phenomena. In Proc. ACM SIGGRAPH, 335–
342.

BAUM, D. R., RUSHMEIER, H. E., AND WINGET, J. M. 1989.
Improving radiosity solutions through the use of analytically de-
termined form-factors. Computer Graphics (Proc. SIGGRAPH)
23, 3, 325–334.

BINGHAM, C. 1974. An antipodally symmetric distribution on the
sphere. The Annals of Statistics 2, 6, 1201–1225.

DROBOT, M. 2014. Physically based area lights. In GPU Pro 5.
67–100.

FISHER, R. 1953. Dispersion on a sphere. Proceedings of the
Royal Society of London. Series A, Mathematical and Physical
Sciences 217, 1130, 295–305.

HILL, S., MCAULEY, S., BURLEY, B., CHAN, D., FASCIONE,
L., IWANICKI, M., HOFFMAN, N., JAKOB, W., NEUBELT, D.,
PESCE, A., AND PETTINEO, M. 2015. Physically based shading
in theory and practice. In ACM SIGGRAPH Courses 2015.

IWASAKI, K., FURUYA, W., DOBASHI, Y., AND NISHITA,
T. 2012. Real-time rendering of dynamic scenes under all-
frequency lighting using integral spherical gaussian. Computer
Graphics Forum (Proc. of Eurographics) 31, 727–734.

KENT, J. T. 1982. The Fisher-Bingham distribution on the sphere.
Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 44, 1, 71–80.

LAGARDE, S., AND DE ROUSIERS, C. 2014. Physically based
shading in theory and practice: Moving Frostbite to PBR. In
ACM SIGGRAPH Courses 2014.

LAMBERT, J. H. 1760. Photometria, sive de mensura et gradibus
luminus, colorum et umbrae.

LECOCQ, P., SOURIMANT, G., AND MARVIE, J.-E. 2015. Accu-
rate analytic approximations for real-time specular area lighting.
In ACM SIGGRAPH 2015 Talks, 68:1–68:1.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Computer Graphics (Proc. SIGGRAPH) 18, 6, 311–317.

SNYDER, J. M. 1996. Area light sources for real-time graphics.
Tech. Rep. MSR-TR-96-11, Microsoft Research.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE,
K. E. 2007. Microfacet models for refraction through rough
surfaces. In Proc. Eurographics Symposium on Rendering, 195–
206.

WANG, L., LIN, Z., WANG, W., AND FU, K. 2008. One-shot
approximate local shading. Tech. rep.

XU, K., SUN, W.-L., DONG, Z., ZHAO, D.-Y., WU, R.-D.,
AND HU, S.-M. 2013. Anisotropic Spherical Gaussians. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia) 32, 6, 209:1–
209:11.

XU, K., CAO, Y.-P., MA, L.-Q., DONG, Z., WANG, R., AND HU,
S.-M. 2014. A practical algorithm for rendering interreflections
with all-frequency brdfs. ACM Transactions on Graphics 33, 1,
10:1–10:16.

A Derivation of the Jacobian

We derive the Jacobian of Eq. (1). The Jacobian of the spheri-
cal transformation measures the change of solid angle illustrated in
Fig. 13. We start from an original configuration with an orthonor-
mal basis (ωo,ω1,ω2) and an infinitesimal solid angle ∂ωo repre-
sented by the red area. We transform the configuration by multiply-
ing by matrix M . The new infinitesimal solid angle to be measured
is ∂ω, represented by the green area. It is the surface area of the
sphere covered by the projection of the transformed infinitesimal
surface

ωo

ω1

ω2

∂ωo

Mωo

Mω1

Mω2

∂ω

Figure 13: Jacobian of the spherical transformation. The Jacobian
measures the scaling ∂ω

∂ωo
of the solid angle from the transforma-

tion.

Fig. 14 illustrates how to compute the new solid angle ∂ω. It is
given by

∂ω = ∂ωoA
cos θ

r2
, (16)

where ∂ωoA is the area of the solid angle (or surface element) after
the transformation, r its distance to the center of the sphere and θ
the angular difference between its direction and its normal.

θ
∂ωoA

r
A = ‖Mω1 ×Mω2‖

cos θ =

〈
Mωo

‖Mωo‖
,
Mω1 ×Mω2

‖Mω1 ×Mω2‖

〉
r = ‖Mωo‖.

Figure 14: Computation of the transformed solid angle.

To expand and simplify Eq. (16), we use the linear algebra property

Mω1 ×Mω2 = |M |M−T (ω1 × ω2)

= |M |M−Tωo, (17)

and after simplifying we obtain

∂ω

∂ωo
=

|M |
‖Mωo‖3

, (18)

and reciprocally

∂ωo

∂ω
=

|M−1|
‖M−1ω‖3 , (19)

which is the Jacobian used in Eq. (1).

