Accurate Analytic Approximations For Real-Time Specular Area Lighting
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Figure 1: Our analytic approximations provide real-time performances to specular area lighting at a quality close to the ground truth (a,d).
We support polygonal light source shapes of any kind (b), animated or not, and provide extension for half-vector based BRDFs (c).

Abstract

Accurate real-time rendering of specular surfaces is a challenging
task when considering area light source illumination. The difficulty
resides in the evaluation of a surface integral for which no practical
solution exists except using expensive Monte Carlo methods. Re-
cent techniques like the most representative point approach [Drobot
2014] alleviate this problem but make some accuracy trade-off to
achieve real-time performance. We introduce analytic approxima-
tions for accurate real-time rendering of specular surfaces illumi-
nated by polygonal light sources. Our solution is based on a re-
formulation of the contour integral [Arvo 1995] we approximate
analytically with simple peak functions. In addition, using simple
geometric operations, we extend the solution to handle more physi-
cally plausible BRDFs. Our solution works without any assumption
on light source shape nor surface roughness, bringing real-time per-
formances with a quality close to the ground truth.

Closed form analytic approximations

Prior work. Our analytic approximations build upon the contour
integration method developed by [Arvo 1995] for Phong surfaces.
The surface integral is evaluated by 1D angular integration over
boundary edges of a polygonal light source. Each edge integral
corresponds to a sum of integrals of simpler form with a closed
solution. The length of the sum is parameterized by the shininess
n, leading to O(n) time computation per edge. Implemented on
a GPU, such evaluation has severe impact on performances when
n > 20, limiting its usage to weakly glossy surfaces.

Our approach. We propose accurate analytic approximations that
reduce the costly edge integration to O(1) time whatever the sur-
face roughness. We first reformulate the edge integral and identify
a geometric series allowing us to cancel out the sum and reduce it
to a single function I to integrate. Even though no anti-derivative
exist for I, an accurate analytic approximation can be obtained. We
observe that the shape of I roughly corresponds to a peak func-
tion with varying scale and width depending on n and a geometric
term c (figure 2 left). Following this statement, we approximate [
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Figure 2: The edge integrand I reveals peak functions with various
shapes (left) that can be fairly well approximated using simple and

integrable peak shape functions (right).

using a single or combined peak shape functions P having simple
anti-derivative for constant time evaluation. The peak function P
is parameterized using an empirical prediction of the half width of
I and one point evaluation on [ using our reformulation. The sim-
plest approximation is obtained using a Lorentzian peak function,
reducing the integration to a single arctangent evaluation. A linear
combination of a Lorentzian and a Pearson VII function provides
the best match for integrand I using a second fitting point in the tail
of I (figure 2 right). Unlike Chebychev or Fourier approximation,
our solution is bound to one or a maximum of 2 analytic functions
and does not suffer from any ringing artifacts.

Results. We tested our solution on an NVIDIA GPU GeForce
GTX580 at a resolution of 1280 x 720 pixels, with full screen cover-
age and edge clipping for correct horizon handling. The Lorentzian
approximation achieves the best performance (= 0.23ms/edge and
RMSE = 0.00246), while the Lorentzian-Pearson is the most accu-
rate with unnoticeable difference with the ground truth (RMSE =~
0.00086 and ~ 0.42ms/edge).

Extension to other BRDFs. We extend the solution to handle half
vector based BRDFs and remove the Phong restriction. We consider
simple geometric operations on the hemisphere combined with an
edge splitting strategy to compensate for the edge distortion intro-
duced by the half vector transformation. As a result, we render
plausible BRDFs in real-time with only a small computational over-
head (= 0.53ms/edge with Lorentzian-Pearson).
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